Fast vehicle detection with probabilistic feature grouping and its application to vehicle tracking

Zuwhan Kim, Jitendra Malik
{"title":"Fast vehicle detection with probabilistic feature grouping and its application to vehicle tracking","authors":"Zuwhan Kim, Jitendra Malik","doi":"10.1109/ICCV.2003.1238392","DOIUrl":null,"url":null,"abstract":"Generating vehicle trajectories from video data is an important application of ITS (intelligent transportation systems). We introduce a new tracking approach which uses model-based 3-D vehicle detection and description algorithm. Our vehicle detection and description algorithm is based on a probabilistic line feature grouping, and it is faster (by up to an order of magnitude) and more flexible than previous image-based algorithms. We present the system implementation and the vehicle detection and tracking results.","PeriodicalId":131580,"journal":{"name":"Proceedings Ninth IEEE International Conference on Computer Vision","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"186","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Ninth IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2003.1238392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 186

Abstract

Generating vehicle trajectories from video data is an important application of ITS (intelligent transportation systems). We introduce a new tracking approach which uses model-based 3-D vehicle detection and description algorithm. Our vehicle detection and description algorithm is based on a probabilistic line feature grouping, and it is faster (by up to an order of magnitude) and more flexible than previous image-based algorithms. We present the system implementation and the vehicle detection and tracking results.
基于概率特征分组的快速车辆检测及其在车辆跟踪中的应用
从视频数据中生成车辆轨迹是智能交通系统的一个重要应用。提出了一种基于模型的三维车辆检测与描述算法的跟踪方法。我们的车辆检测和描述算法基于概率线特征分组,它比以前基于图像的算法更快(高达一个数量级),也更灵活。给出了系统的实现和车辆检测与跟踪结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信