Towards Motion-Aware Passive Resting Respiratory Rate Monitoring Using Earbuds

Md. Mahbubur Rahman, Tousif Ahmed, M. Y. Ahmed, Ebrahim Nemati, Minh Dinh, Nathan Folkman, Md Mehedi Hasan, Jilong Kuang, J. Gao
{"title":"Towards Motion-Aware Passive Resting Respiratory Rate Monitoring Using Earbuds","authors":"Md. Mahbubur Rahman, Tousif Ahmed, M. Y. Ahmed, Ebrahim Nemati, Minh Dinh, Nathan Folkman, Md Mehedi Hasan, Jilong Kuang, J. Gao","doi":"10.1109/BSN51625.2021.9507016","DOIUrl":null,"url":null,"abstract":"Breathing rate is an important vital sign and an indicator of overall health and fitness. Traditionally breathing is monitored using specialized devices such as chestband or spirometers which are uncomfortable for daily use. Recent works show the feasibility of estimating breathing rate using earbuds' motion sensors. However, non-breathing head motion is one of the biggest challenges for breathing rate estimation using earbuds. In this paper, we propose algorithms to estimate breathing rate in presence of non-breathing head motion using inertial sensors embedded in commodity earbuds. Using the chestband as a reference device, we show that our algorithms can estimate breathing rate in resting positions with error rate 2.34 breaths per minute (BPM). Our algorithms can handle passive head motion and reduce the error by 27.78%. Furthermore, our algorithms can handle active head motion and help reduce the error by 45.70% when intentional non-breathing head motion is present in the data segment. It can be a big stride towards passive breathing monitoring in daily life using commodity earbuds.","PeriodicalId":181520,"journal":{"name":"2021 IEEE 17th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 17th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN51625.2021.9507016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Breathing rate is an important vital sign and an indicator of overall health and fitness. Traditionally breathing is monitored using specialized devices such as chestband or spirometers which are uncomfortable for daily use. Recent works show the feasibility of estimating breathing rate using earbuds' motion sensors. However, non-breathing head motion is one of the biggest challenges for breathing rate estimation using earbuds. In this paper, we propose algorithms to estimate breathing rate in presence of non-breathing head motion using inertial sensors embedded in commodity earbuds. Using the chestband as a reference device, we show that our algorithms can estimate breathing rate in resting positions with error rate 2.34 breaths per minute (BPM). Our algorithms can handle passive head motion and reduce the error by 27.78%. Furthermore, our algorithms can handle active head motion and help reduce the error by 45.70% when intentional non-breathing head motion is present in the data segment. It can be a big stride towards passive breathing monitoring in daily life using commodity earbuds.
利用耳塞实现运动感知被动静息呼吸率监测
呼吸频率是一个重要的生命体征,也是整体健康和体能的指标。传统的呼吸监测是使用专门的设备,如胸带或肺活量计,这是不舒服的日常使用。最近的研究表明,使用耳塞的运动传感器来估计呼吸频率是可行的。然而,不呼吸的头部运动是使用耳塞估计呼吸频率的最大挑战之一。在本文中,我们提出了一种算法,使用嵌入在商品耳塞中的惯性传感器来估计存在非呼吸头部运动的呼吸速率。使用胸带作为参考装置,我们表明我们的算法可以估计静止位置的呼吸频率,错误率为2.34次/分钟(BPM)。该算法可以处理被动头部运动,误差降低27.78%。此外,我们的算法可以处理主动的头部运动,当数据段中存在故意的非呼吸头部运动时,可以帮助减少45.70%的误差。这可能是在日常生活中使用商品耳塞进行被动呼吸监测的一大步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信