Multi-Label Classification of Jasmine Rice Germination Using Deep Neural Network

Somsawut Nindam, T. Manmai, Hyo Jong Lee
{"title":"Multi-Label Classification of Jasmine Rice Germination Using Deep Neural Network","authors":"Somsawut Nindam, T. Manmai, Hyo Jong Lee","doi":"10.1109/ICBIR54589.2022.9786383","DOIUrl":null,"url":null,"abstract":"This paper proposes a multi-label image classification of Jasmine Rice (Thai Hom Mali) seed germination using the Deep Neural Network architecture. First, we have collected the dataset of normal germination of the rice and separated them into three classes: excellent-germination, good-germination, and poor-germination. Second, we feed the dataset into the Convolutional Neural Network for multi-label classifications. The dataset consists of 970 pictures in the training set and 194 images in the validation set. Lastly, we evaluated the model based on the confusion matrix. The results show that the precision, recall, and Fl-score are 0.80, 1.00, and 0.89 for excellent germination, 0.83, 0.83, and 0.83 for good germination, and 1.00, 0.87, 0.93 for poor germination, respectively. The accuracy of the predictions is satisfactory, which is higher than 0.89.","PeriodicalId":216904,"journal":{"name":"2022 7th International Conference on Business and Industrial Research (ICBIR)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Business and Industrial Research (ICBIR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBIR54589.2022.9786383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a multi-label image classification of Jasmine Rice (Thai Hom Mali) seed germination using the Deep Neural Network architecture. First, we have collected the dataset of normal germination of the rice and separated them into three classes: excellent-germination, good-germination, and poor-germination. Second, we feed the dataset into the Convolutional Neural Network for multi-label classifications. The dataset consists of 970 pictures in the training set and 194 images in the validation set. Lastly, we evaluated the model based on the confusion matrix. The results show that the precision, recall, and Fl-score are 0.80, 1.00, and 0.89 for excellent germination, 0.83, 0.83, and 0.83 for good germination, and 1.00, 0.87, 0.93 for poor germination, respectively. The accuracy of the predictions is satisfactory, which is higher than 0.89.
基于深度神经网络的茉莉萌发多标签分类
本文提出了一种基于深度神经网络的茉莉大米种子萌发多标签图像分类方法。首先,我们收集了水稻正常发芽率的数据集,并将其分为优异发芽率、良好发芽率和差发芽率三类。其次,我们将数据集输入卷积神经网络进行多标签分类。该数据集由970张训练集的图片和194张验证集的图片组成。最后,我们基于混淆矩阵对模型进行评估。结果表明:优良种子的精密度为0.80、1.00和0.89,良好种子的查全率为0.83、0.83和0.83,差种子的查全率为1.00、0.87和0.93。预测结果的准确度高于0.89,令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信