Necessary and sufficient conditions for local second order identifiability

R. Goodrich, Peter E. Caines
{"title":"Necessary and sufficient conditions for local second order identifiability","authors":"R. Goodrich, Peter E. Caines","doi":"10.1109/CDC.1978.267931","DOIUrl":null,"url":null,"abstract":"We discuss the nature of the equivalence of (1) the nonsingularity of the asymptotic information matrix of a given process, i.e. the limit of the Hessian matrix (with respect to the parameter ¿) of the log likelihood function and (2) local identifiability of the parameter ¿. Second order local identifiability is given a structural definition related to those of [3], [5], [6]. The proof of the main equivalence theorem differs from that of Rothenberg [6] in that it does not involve differential equations.","PeriodicalId":375119,"journal":{"name":"1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1978.267931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We discuss the nature of the equivalence of (1) the nonsingularity of the asymptotic information matrix of a given process, i.e. the limit of the Hessian matrix (with respect to the parameter ¿) of the log likelihood function and (2) local identifiability of the parameter ¿. Second order local identifiability is given a structural definition related to those of [3], [5], [6]. The proof of the main equivalence theorem differs from that of Rothenberg [6] in that it does not involve differential equations.
局部二阶可辨识的充分必要条件
我们讨论了(1)给定过程的渐近信息矩阵的非奇异性,即对数似然函数的Hessian矩阵(关于参数¿)的极限和(2)参数¿的局部可识别性的等价性质。给出了与[3]、[5]、[6]相关的二阶局部可辨识性的结构定义。主要等价定理的证明与Rothenberg[6]的证明不同之处在于它不涉及微分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信