Breast Cancer Diagnosis in Histopathological Images Using ResNet-50 Convolutional Neural Network

Q. A. Al-Haija, A. Adebanjo
{"title":"Breast Cancer Diagnosis in Histopathological Images Using ResNet-50 Convolutional Neural Network","authors":"Q. A. Al-Haija, A. Adebanjo","doi":"10.1109/IEMTRONICS51293.2020.9216455","DOIUrl":null,"url":null,"abstract":"Breast cancer disease is the second most common world cause of cancer death in women. However, the early diagnostics and detection can provide a significant chance for correct treatment and survival. In this work, we propose an accurate and inclusive computational breast cancer diagnosis framework using ResNet-50 convolutional neural network to classify histopathological microscopy images. The proposed model employs transfer learning technique of the powerful ResNet-50 CNN pretrained on ImageNet to train and classify BreakHis dataset into benign or malignant. The simulation results showed that our proposed model achieves exceptional classification accuracy of 99% outperforming other compared models trained on the same dataset.","PeriodicalId":269697,"journal":{"name":"2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMTRONICS51293.2020.9216455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 62

Abstract

Breast cancer disease is the second most common world cause of cancer death in women. However, the early diagnostics and detection can provide a significant chance for correct treatment and survival. In this work, we propose an accurate and inclusive computational breast cancer diagnosis framework using ResNet-50 convolutional neural network to classify histopathological microscopy images. The proposed model employs transfer learning technique of the powerful ResNet-50 CNN pretrained on ImageNet to train and classify BreakHis dataset into benign or malignant. The simulation results showed that our proposed model achieves exceptional classification accuracy of 99% outperforming other compared models trained on the same dataset.
使用ResNet-50卷积神经网络在组织病理学图像中诊断乳腺癌
乳腺癌是世界上导致妇女癌症死亡的第二大常见原因。然而,早期诊断和发现可以为正确的治疗和生存提供重要的机会。在这项工作中,我们提出了一个准确和包容的计算乳腺癌诊断框架,使用ResNet-50卷积神经网络对组织病理显微镜图像进行分类。该模型采用在ImageNet上预训练的强大的ResNet-50 CNN的迁移学习技术,对BreakHis数据集进行训练并将其分类为良性或恶性。仿真结果表明,该模型的分类准确率达到99%,优于在相同数据集上训练的其他模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信