Analysis of Exponential Smoothing Forecasting Model of Medical Cases for Resource Allocation Recommender System

Mary Ann F. Quioc, Shaneth C. Ambat, A. Lagman, Ronel F. Ramos, R. R. Maaliw
{"title":"Analysis of Exponential Smoothing Forecasting Model of Medical Cases for Resource Allocation Recommender System","authors":"Mary Ann F. Quioc, Shaneth C. Ambat, A. Lagman, Ronel F. Ramos, R. R. Maaliw","doi":"10.1109/ICIET55102.2022.9778987","DOIUrl":null,"url":null,"abstract":"Forecasting the number of incidences of medical cases is important in planning institutional health program strategies to draft intervention and allocate resources. The utilization of advancements in computing and the use of massive health data create possibilities for the generation of tools in a recommender system. This study focused on medical cases forecasting using exponential smoothing model for the development of resource allocation recommender system. Different data pre-processing techniques were used such as imputation and data cleaning in the historical dataset. To determine which set of alpha values can be considered and be used in the development of online resource allocation recommender system for Mabalacat City Health Unit, the mean absolute percent error and mean absolute deviation were used. Exponential smoothing with an alpha value of 0.9 and 0.3 have high forecasted values than that of Exponential smoothing using 0.1, 0.5 and 0.7 respectively.","PeriodicalId":371262,"journal":{"name":"2022 10th International Conference on Information and Education Technology (ICIET)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 10th International Conference on Information and Education Technology (ICIET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIET55102.2022.9778987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Forecasting the number of incidences of medical cases is important in planning institutional health program strategies to draft intervention and allocate resources. The utilization of advancements in computing and the use of massive health data create possibilities for the generation of tools in a recommender system. This study focused on medical cases forecasting using exponential smoothing model for the development of resource allocation recommender system. Different data pre-processing techniques were used such as imputation and data cleaning in the historical dataset. To determine which set of alpha values can be considered and be used in the development of online resource allocation recommender system for Mabalacat City Health Unit, the mean absolute percent error and mean absolute deviation were used. Exponential smoothing with an alpha value of 0.9 and 0.3 have high forecasted values than that of Exponential smoothing using 0.1, 0.5 and 0.7 respectively.
资源配置推荐系统中病例指数平滑预测模型分析
预测医疗病例的发生率对于制定机构卫生计划战略、起草干预措施和分配资源具有重要意义。利用先进的计算技术和使用大量卫生数据为在推荐系统中生成工具创造了可能性。本文主要研究了利用指数平滑模型对医疗病例进行预测,开发资源配置推荐系统。采用了不同的数据预处理技术,如历史数据集的输入和数据清洗。为了确定哪一组alpha值可用于Mabalacat市卫生单位在线资源分配推荐系统的开发,采用了平均绝对百分比误差和平均绝对偏差。α值为0.9和0.3的指数平滑比α值分别为0.1、0.5和0.7的指数平滑具有更高的预测值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信