On the completenes principle: A study of provability in heyting's arithmetic and extensions

Albert Visser
{"title":"On the completenes principle: A study of provability in heyting's arithmetic and extensions","authors":"Albert Visser","doi":"10.1016/0003-4843(82)90024-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper extensions of HA are studied that prove their own completeness, i.e. they prove <em>A</em> → □ <em>A</em>, where □ is interpreted as provability in the theory itself. Motivation is three-fold: (1) these theories are thought to have some intrinsic interest, (2) they are a tool for producing and studying provability principles, (3) they can be used to proved independence results. Work done in the paper connected with these motivations is respectively: </p><ul><li><span>1.</span><span><p>(i) A characterization is given of theories proving their own completeness, including an appropriate conservation result.</p></span></li><li><span>2.</span><span><p>(ii) Some new provability principles are produced. The provability logic of HA is not a sublogic of the of PA. A provability logic plus completeness theorem is given for a certain intuitionistic extension of HA. De Jongh's theorem for propositional logic is a corollary.</p></span></li><li><span>3.</span><span><p>(iii) FP-realizability in Beeson's proof that <span><math><mtext>∦</mtext><msub><mi></mi><mn><mtext>HA</mtext></mn></msub></math></span> KLS is replaced by theories proving their own completeness. New consequences are <span><math><mtext>∦</mtext><msub><mi></mi><mn><mtext>HA</mtext><mtext>+−</mtext><mtext>M</mtext><msub><mi></mi><mn>PR</mn></msub></mn></msub><mtext> </mtext><mtext>KLS</mtext></math></span>, <span><math><mtext>∦</mtext><msub><mi></mi><mn><mtext>HA+DNS</mtext></mn></msub><mtext> </mtext><mtext>KLS</mtext></math></span>.</p></span></li></ul></div>","PeriodicalId":100093,"journal":{"name":"Annals of Mathematical Logic","volume":"22 3","pages":"Pages 263-295"},"PeriodicalIF":0.0000,"publicationDate":"1982-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0003-4843(82)90024-9","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematical Logic","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0003484382900249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

Abstract

In this paper extensions of HA are studied that prove their own completeness, i.e. they prove A → □ A, where □ is interpreted as provability in the theory itself. Motivation is three-fold: (1) these theories are thought to have some intrinsic interest, (2) they are a tool for producing and studying provability principles, (3) they can be used to proved independence results. Work done in the paper connected with these motivations is respectively:

  • 1.

    (i) A characterization is given of theories proving their own completeness, including an appropriate conservation result.

  • 2.

    (ii) Some new provability principles are produced. The provability logic of HA is not a sublogic of the of PA. A provability logic plus completeness theorem is given for a certain intuitionistic extension of HA. De Jongh's theorem for propositional logic is a corollary.

  • 3.

    (iii) FP-realizability in Beeson's proof that HA KLS is replaced by theories proving their own completeness. New consequences are HA+−MPR KLS, HA+DNS KLS.

完备原理:heyting算法及其扩展的可证明性研究
本文研究了证明自身完备性的HA的扩展,即证明了A→□A,其中□被解释为理论本身的可证明性。动机有三个方面:(1)这些理论被认为具有某种内在的利益,(2)它们是产生和研究可证明性原则的工具,(3)它们可用于证明独立性的结果。本文所做的与这些动机有关的工作分别是:1.(i)给出了证明其完备性的理论的一个表征,包括一个适当的守恒结果。2.(ii)给出了一些新的可证明性原理。HA的可证明性逻辑不是PA的子逻辑。对于HA的某一直觉扩展,给出了一个可证性逻辑加完备性定理。3.(iii) Beeson证明∦HA KLS被证明其自身完备性的理论所取代的fp -可实现性。新的结果是∦HA+−MPR KLS,∦HA+DNS KLS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信