Hidden Markov Models for feature-level fusion of biometrics on mobile devices

M. Gofman, S. Mitra, Nicholas Smith
{"title":"Hidden Markov Models for feature-level fusion of biometrics on mobile devices","authors":"M. Gofman, S. Mitra, Nicholas Smith","doi":"10.1109/AICCSA.2016.7945755","DOIUrl":null,"url":null,"abstract":"Although biometrics have forayed into the mobile world, most current approaches rely on a single biometric modality. This limits their recognition accuracy in uncontrolled conditions. For example, performance of face and voice recognition systems may suffer in poorly lit and noisy settings, respectively. Integration of identifying information from multiple biometric modalities can help solve this problem; high-quality identifying information in one modality can compensate for the absence of such information in a modality affected by uncontrolled conditions. In this paper, we present a novel multimodal biometric scheme that uses Hidden Markov Models to consolidate data from face and voice biometrics at the feature level. An implementation on the Samsung Galaxy S5 (SG5) phone using a dataset of face and voice samples captured using SG5 in real-world operating conditions, yielded 4.18% and 9.71% higher recognition accuracy than face and voice single-modality systems, respectively.","PeriodicalId":448329,"journal":{"name":"2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICCSA.2016.7945755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Although biometrics have forayed into the mobile world, most current approaches rely on a single biometric modality. This limits their recognition accuracy in uncontrolled conditions. For example, performance of face and voice recognition systems may suffer in poorly lit and noisy settings, respectively. Integration of identifying information from multiple biometric modalities can help solve this problem; high-quality identifying information in one modality can compensate for the absence of such information in a modality affected by uncontrolled conditions. In this paper, we present a novel multimodal biometric scheme that uses Hidden Markov Models to consolidate data from face and voice biometrics at the feature level. An implementation on the Samsung Galaxy S5 (SG5) phone using a dataset of face and voice samples captured using SG5 in real-world operating conditions, yielded 4.18% and 9.71% higher recognition accuracy than face and voice single-modality systems, respectively.
移动设备生物特征融合的隐马尔可夫模型
尽管生物识别技术已经涉足移动世界,但目前大多数方法都依赖于单一的生物识别模式。这限制了它们在非受控条件下的识别准确性。例如,面部和声音识别系统的性能可能分别在光线不足和嘈杂的环境中受到影响。整合来自多种生物识别模式的识别信息可以帮助解决这一问题;一种模态中的高质量识别信息可以弥补受不受控制条件影响的模态中此类信息的缺失。在本文中,我们提出了一种新的多模态生物识别方案,该方案使用隐马尔可夫模型在特征级别整合面部和语音生物识别数据。在三星Galaxy S5 (SG5)手机上使用SG5在真实操作条件下捕获的面部和语音样本数据集实现,识别准确率分别比面部和语音单模态系统高4.18%和9.71%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信