Cell Tracking with Deep Learning and the Viterbi Algorithm

David E. Hernandez, Steven W. Chen, Elizabeth E. Hunter, E. Steager, Vijay R. Kumar
{"title":"Cell Tracking with Deep Learning and the Viterbi Algorithm","authors":"David E. Hernandez, Steven W. Chen, Elizabeth E. Hunter, E. Steager, Vijay R. Kumar","doi":"10.1109/MARSS.2018.8481231","DOIUrl":null,"url":null,"abstract":"We present a cell tracking pipeline that combines deep cell segmentation with a Viterbi algorithm tracker to accurately detect and track cells in microscopy videos. Our pipeline handles large illumination shifts, large appearance variability in the cells, and heavy occlusion from other cells and debris. We first train a Fully Convolutional Network (FCN) to detect the cells, then track the cells across frames using a tracker based on the Viterbi algorithm. We evaluate our algorithm on a dataset featuring Escherichia coli (E. coli) where the experimental goal is to immobilize the E. coli using blue light, thus making the dataset especially challenging due to large illumination shifts. Our results demonstrate that despite these challenges, our pipeline is able to accurately detect and track the cells.","PeriodicalId":118389,"journal":{"name":"2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MARSS.2018.8481231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

We present a cell tracking pipeline that combines deep cell segmentation with a Viterbi algorithm tracker to accurately detect and track cells in microscopy videos. Our pipeline handles large illumination shifts, large appearance variability in the cells, and heavy occlusion from other cells and debris. We first train a Fully Convolutional Network (FCN) to detect the cells, then track the cells across frames using a tracker based on the Viterbi algorithm. We evaluate our algorithm on a dataset featuring Escherichia coli (E. coli) where the experimental goal is to immobilize the E. coli using blue light, thus making the dataset especially challenging due to large illumination shifts. Our results demonstrate that despite these challenges, our pipeline is able to accurately detect and track the cells.
基于深度学习和Viterbi算法的细胞跟踪
我们提出了一个细胞跟踪管道,结合了深度细胞分割和Viterbi算法跟踪器,以准确地检测和跟踪显微镜视频中的细胞。我们的管道处理大的光照变化,大的细胞外观可变性,以及来自其他细胞和碎片的严重遮挡。我们首先训练一个全卷积网络(FCN)来检测细胞,然后使用基于Viterbi算法的跟踪器跨帧跟踪细胞。我们在一个以大肠杆菌(E. coli)为特征的数据集上评估了我们的算法,其中实验目标是使用蓝光固定大肠杆菌,因此由于光照的大变化,数据集特别具有挑战性。我们的结果表明,尽管存在这些挑战,我们的管道能够准确地检测和跟踪细胞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信