{"title":"Interactive poster: Visual analytic techniques for CO2 emissions and concentrations in the United States","authors":"N. Andrysco, Bedrich Benes, K. Gurney","doi":"10.1109/VAST.2008.4677372","DOIUrl":null,"url":null,"abstract":"Climate change has emerged as one of the grand global challenges facing humanity. The dominant anthropogenic greenhouse gas that seems to be contributing to the climate change problem, carbon dioxide (CO2), has a complex cycle through the atmosphere, oceans and biosphere. The combustion of fossil fuels (power production, transportation, etc.) remains the largest source of anthropogenic CO2 to the Earthpsilas atmosphere. Up until very recently, the quantification of fossil fuel CO2 was understood only at coarse space and time scales. A recent research effort has greatly improved this space/time quantification resulting in source data at a resolution of less than 10 km2/hr at the surface of North America. By providing visual tools to examine this new, high resolution CO2 data, we can better understand the way that CO2 is transmitted within the atmosphere and how it is exchanged with other components of the Earth System. We have developed interactive visual analytic tools, which allows for easy data manipulation, analysis, and extraction. The visualization system is aimed for a wide range of users which include researchers and political leaders. The goal is to help assist these people in analyzing data and enabling new policy options in mitigation of fossil fuel CO2 emissions in the U.S.","PeriodicalId":213107,"journal":{"name":"2008 IEEE Symposium on Visual Analytics Science and Technology","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Symposium on Visual Analytics Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VAST.2008.4677372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Climate change has emerged as one of the grand global challenges facing humanity. The dominant anthropogenic greenhouse gas that seems to be contributing to the climate change problem, carbon dioxide (CO2), has a complex cycle through the atmosphere, oceans and biosphere. The combustion of fossil fuels (power production, transportation, etc.) remains the largest source of anthropogenic CO2 to the Earthpsilas atmosphere. Up until very recently, the quantification of fossil fuel CO2 was understood only at coarse space and time scales. A recent research effort has greatly improved this space/time quantification resulting in source data at a resolution of less than 10 km2/hr at the surface of North America. By providing visual tools to examine this new, high resolution CO2 data, we can better understand the way that CO2 is transmitted within the atmosphere and how it is exchanged with other components of the Earth System. We have developed interactive visual analytic tools, which allows for easy data manipulation, analysis, and extraction. The visualization system is aimed for a wide range of users which include researchers and political leaders. The goal is to help assist these people in analyzing data and enabling new policy options in mitigation of fossil fuel CO2 emissions in the U.S.