The Application of SMOTE Algorithm for Unbalanced Data

Dong Lv, Zhicheng Ma, Shibo Yang, Xianbo Li, Zhixin Ma, Fan Jiang
{"title":"The Application of SMOTE Algorithm for Unbalanced Data","authors":"Dong Lv, Zhicheng Ma, Shibo Yang, Xianbo Li, Zhixin Ma, Fan Jiang","doi":"10.1145/3293663.3293686","DOIUrl":null,"url":null,"abstract":"The current power user data is unbalanced when it is used to analyze the behavior of the leakage user. In other words, the normal user data and the leakage user data have an inconsistent scale. When the automatic identification model of the leakage user is established, the analysis of the information of the leakage user's behavior feature is not clear, which leads to the reduction of the model's efficiency of classification. In this paper, we use Python and deal with the leakage user data based on SMOTE algorithm to increase the basic information of the users and extract more accurate leakage user behavior characteristics.","PeriodicalId":420290,"journal":{"name":"International Conference on Artificial Intelligence and Virtual Reality","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Artificial Intelligence and Virtual Reality","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3293663.3293686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The current power user data is unbalanced when it is used to analyze the behavior of the leakage user. In other words, the normal user data and the leakage user data have an inconsistent scale. When the automatic identification model of the leakage user is established, the analysis of the information of the leakage user's behavior feature is not clear, which leads to the reduction of the model's efficiency of classification. In this paper, we use Python and deal with the leakage user data based on SMOTE algorithm to increase the basic information of the users and extract more accurate leakage user behavior characteristics.
SMOTE算法在非平衡数据中的应用
当前的电力用户数据在分析漏电用户行为时是不平衡的。也就是说,正常用户数据和泄漏用户数据的尺度不一致。在建立泄漏用户自动识别模型时,对泄漏用户行为特征信息的分析不明确,导致模型的分类效率降低。本文使用Python,基于SMOTE算法处理泄漏用户数据,增加用户的基本信息,提取更准确的泄漏用户行为特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信