A method that combines inductive learning with exemplar-based learning

J. Zhang
{"title":"A method that combines inductive learning with exemplar-based learning","authors":"J. Zhang","doi":"10.1109/TAI.1990.130306","DOIUrl":null,"url":null,"abstract":"A learning approach that combines inductive learning with exemplar-based learning is described. In the method, a concept is represented by two parts: a generalized abstract description and a set of exemplars (exceptions). Generalized descriptions represent the principles of concepts, whereas exemplars represent the exceptional or rare cases. The method is an alternative for solving the problem of small disjuncts and for representing concepts with imprecise and irregular boundaries. The method for combining inductive learning and exemplar-based learning has been implemented in the flexible concept learning system. Experiments showed that the combined method has comparable performance to that of AQ16 and ASSISTANT in three natural domains.<<ETX>>","PeriodicalId":366276,"journal":{"name":"[1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1990.130306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

A learning approach that combines inductive learning with exemplar-based learning is described. In the method, a concept is represented by two parts: a generalized abstract description and a set of exemplars (exceptions). Generalized descriptions represent the principles of concepts, whereas exemplars represent the exceptional or rare cases. The method is an alternative for solving the problem of small disjuncts and for representing concepts with imprecise and irregular boundaries. The method for combining inductive learning and exemplar-based learning has been implemented in the flexible concept learning system. Experiments showed that the combined method has comparable performance to that of AQ16 and ASSISTANT in three natural domains.<>
一种将归纳学习与基于范例的学习相结合的方法
描述了一种将归纳学习与基于范例的学习相结合的学习方法。在该方法中,一个概念由两部分表示:一个广义的抽象描述和一组范例(例外)。广义描述代表概念的原则,而范例代表例外或罕见的情况。该方法是解决小分离问题和表示具有不精确和不规则边界的概念的一种替代方法。在柔性概念学习系统中实现了归纳学习和基于范例学习相结合的方法。实验表明,该组合方法在三个自然域上的性能与AQ16和ASSISTANT相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信