Localization of iRobot create using inertial measuring unit

M. Guran, Tomas Fico, Anezka Chovancova, F. Duchoň, P. Hubinský, J. Dubravsky
{"title":"Localization of iRobot create using inertial measuring unit","authors":"M. Guran, Tomas Fico, Anezka Chovancova, F. Duchoň, P. Hubinský, J. Dubravsky","doi":"10.1109/RAAD.2014.7002261","DOIUrl":null,"url":null,"abstract":"This article deals with the localization of an iRobot Create robotic platform using an inertial measurement unit (IMU). The used IMU consists of a gyroscope and accelerometer. The implementation of the IMU in the robotic platform allows the use of complex localization methods. We compare results of experimental measurement using odometry, gyroscope, accelerometer and their combination. In order to fuse sensor signals, a Complementary and a Kalman filter are designed and tuned. Various methods are used to verify results, such as UMBmark and rotation test. The combination of the IMU and mentioned filters provides better results of the localization in comparison with the odometry.","PeriodicalId":205930,"journal":{"name":"2014 23rd International Conference on Robotics in Alpe-Adria-Danube Region (RAAD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 23rd International Conference on Robotics in Alpe-Adria-Danube Region (RAAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAAD.2014.7002261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This article deals with the localization of an iRobot Create robotic platform using an inertial measurement unit (IMU). The used IMU consists of a gyroscope and accelerometer. The implementation of the IMU in the robotic platform allows the use of complex localization methods. We compare results of experimental measurement using odometry, gyroscope, accelerometer and their combination. In order to fuse sensor signals, a Complementary and a Kalman filter are designed and tuned. Various methods are used to verify results, such as UMBmark and rotation test. The combination of the IMU and mentioned filters provides better results of the localization in comparison with the odometry.
使用惯性测量单元创建iRobot的定位
本文讨论了使用惯性测量单元(IMU)的iRobot Create机器人平台的定位。所使用的IMU由陀螺仪和加速度计组成。IMU在机器人平台中的实现允许使用复杂的定位方法。比较了里程计、陀螺仪、加速度计及其组合的实验测量结果。为了实现传感器信号的融合,设计并调整了互补滤波器和卡尔曼滤波器。验证结果的方法多种多样,如UMBmark和rotation test。IMU和上述滤波器的组合与里程计相比,具有更好的定位效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信