Consistent Map Building by a mobile robot euipped with stereo sensor and lrf

Xiuzhi Li, S. Jia, Wei Cui, Jinhui Fan, Jinbo Sheng
{"title":"Consistent Map Building by a mobile robot euipped with stereo sensor and lrf","authors":"Xiuzhi Li, S. Jia, Wei Cui, Jinhui Fan, Jinbo Sheng","doi":"10.1109/CSAE.2011.5952642","DOIUrl":null,"url":null,"abstract":"This paper presents an efficient map building technique for indoor mobile robot navigation based on laser range finder and binocular stereo vision sensors. To effectively incorporate different sensors and deal with measurement uncertainty involved in environment perception, this article presents a local map integration approach in which Bayesian filter based dynamic occupancy grid map modeling techniques are employed. The adopted method is discussed in the context of mobile robot Simultaneous Localization and Map-Building (SLAM). In SLAM routine, the integrated local map is utilized as observation input, and Rao-Blackwellized Particle Filter (RBPF) is used for refining location estimation and generating accurate global map. Advantages of our proposal are validated by real experimental results carried on Pioneer robot.","PeriodicalId":138215,"journal":{"name":"2011 IEEE International Conference on Computer Science and Automation Engineering","volume":"66 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Computer Science and Automation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSAE.2011.5952642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper presents an efficient map building technique for indoor mobile robot navigation based on laser range finder and binocular stereo vision sensors. To effectively incorporate different sensors and deal with measurement uncertainty involved in environment perception, this article presents a local map integration approach in which Bayesian filter based dynamic occupancy grid map modeling techniques are employed. The adopted method is discussed in the context of mobile robot Simultaneous Localization and Map-Building (SLAM). In SLAM routine, the integrated local map is utilized as observation input, and Rao-Blackwellized Particle Filter (RBPF) is used for refining location estimation and generating accurate global map. Advantages of our proposal are validated by real experimental results carried on Pioneer robot.
由配备立体传感器和lrf的移动机器人构建一致地图
提出了一种基于激光测距仪和双目立体视觉传感器的室内移动机器人导航高效地图生成技术。为了有效地整合不同传感器并处理环境感知中涉及的测量不确定性,本文提出了一种基于贝叶斯滤波的动态占用网格地图建模技术的局部地图集成方法。在移动机器人同步定位和地图构建(SLAM)的背景下讨论了所采用的方法。SLAM算法以集成的局部地图作为观测输入,利用Rao-Blackwellized Particle Filter (RBPF)对位置估计进行细化,生成精确的全局地图。在先锋机器人上进行的实际实验结果验证了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信