Iterating the Arimoto-Blahut algorithm for faster convergence

J. Sayir
{"title":"Iterating the Arimoto-Blahut algorithm for faster convergence","authors":"J. Sayir","doi":"10.1109/ISIT.2000.866533","DOIUrl":null,"url":null,"abstract":"The Arimoto-Blahut algorithm determines the capacity of a discrete memoryless channel through an iterative process in which the input probability distribution is adapted at each iteration. While it converges towards the capacity-achieving distribution for any discrete memoryless channel, the convergence can be slow when the channel has a large input alphabet. This is unfortunate when only a small number of the input letters are assigned non-zero probabilities in the capacity-achieving distribution. If we knew which input letters will end up with a probability of zero, we could eliminate these letters and operate the algorithm on a subset of the input alphabet. The algorithm would converge towards the same solution faster. We present an algorithm which makes use of this fact to speed up the convergence of the Arimoto-Blahut algorithm in such situations.","PeriodicalId":108752,"journal":{"name":"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2000.866533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

The Arimoto-Blahut algorithm determines the capacity of a discrete memoryless channel through an iterative process in which the input probability distribution is adapted at each iteration. While it converges towards the capacity-achieving distribution for any discrete memoryless channel, the convergence can be slow when the channel has a large input alphabet. This is unfortunate when only a small number of the input letters are assigned non-zero probabilities in the capacity-achieving distribution. If we knew which input letters will end up with a probability of zero, we could eliminate these letters and operate the algorithm on a subset of the input alphabet. The algorithm would converge towards the same solution faster. We present an algorithm which makes use of this fact to speed up the convergence of the Arimoto-Blahut algorithm in such situations.
迭代Arimoto-Blahut算法以获得更快的收敛速度
Arimoto-Blahut算法通过一个迭代过程来确定离散无记忆信道的容量,在这个迭代过程中,每次迭代都适应输入概率分布。虽然它收敛于任何离散无存储器信道的容量实现分布,但当信道具有较大的输入字母时,收敛速度可能很慢。当只有少数输入字母在容量实现分布中被分配非零概率时,这是不幸的。如果我们知道哪些输入字母的概率为零,我们就可以消除这些字母,并在输入字母的一个子集上操作算法。该算法会更快地收敛于相同的解。我们提出了一种算法,利用这一事实来加快这种情况下Arimoto-Blahut算法的收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信