{"title":"Predicting Structural Similarity between Molecules Using Graph Neural Networks","authors":"Sichen Deng, Yŏng-ik Yu","doi":"10.1109/icbcb55259.2022.9802484","DOIUrl":null,"url":null,"abstract":"Molecule properties and functions are highly influenced by their structures. Investigating the structural similarity between molecules is a fundamental task in chemistry-related fields, which is able to benefit a wide range of downstream tasks. Graph edit distance (GED) is a representative metric for measuring the structural similarity between molecules. However, exactly calculating the GED is an NP-hard problem. In this paper, we use graph neural networks to process a pair of molecules and output their representations, finally feeding the two representations into a regression model to predict their ground-truth GED. The experimental results show that our model significantly outperforms other molecule representation learning methods in GED prediction. Moreover, our model is shown to be significantly more time-efficient than the algorithm that calculates the exact GED. The proposed methodology can provide guidance for similar molecule retrieval and drug discovery.","PeriodicalId":429633,"journal":{"name":"2022 10th International Conference on Bioinformatics and Computational Biology (ICBCB)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 10th International Conference on Bioinformatics and Computational Biology (ICBCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icbcb55259.2022.9802484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Molecule properties and functions are highly influenced by their structures. Investigating the structural similarity between molecules is a fundamental task in chemistry-related fields, which is able to benefit a wide range of downstream tasks. Graph edit distance (GED) is a representative metric for measuring the structural similarity between molecules. However, exactly calculating the GED is an NP-hard problem. In this paper, we use graph neural networks to process a pair of molecules and output their representations, finally feeding the two representations into a regression model to predict their ground-truth GED. The experimental results show that our model significantly outperforms other molecule representation learning methods in GED prediction. Moreover, our model is shown to be significantly more time-efficient than the algorithm that calculates the exact GED. The proposed methodology can provide guidance for similar molecule retrieval and drug discovery.