Self-Configuration in Autonomic Systems Using Clustered CBR Approach

M. Khan, M. Awais, S. Shamail
{"title":"Self-Configuration in Autonomic Systems Using Clustered CBR Approach","authors":"M. Khan, M. Awais, S. Shamail","doi":"10.1109/ICAC.2008.10","DOIUrl":null,"url":null,"abstract":"Self-configuration is one of the key properties of autonomic systems. We apply an experience-based artificial intelligence approach known as case-based reasoning (CBR) in order to help autonomic manager to devise new configuration solution. Searching the entire case-base on occurrences of every new problem is a time consuming task. We propose to cluster the case-base and classify each new problem among one of the clusters. Our approach to reduce the search space promises to achieve efficiency as well as accuracy. We performed experiments on a simulation of autonomic forest fire application and achieved inspiring results.","PeriodicalId":436716,"journal":{"name":"2008 International Conference on Autonomic Computing","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Autonomic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAC.2008.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Self-configuration is one of the key properties of autonomic systems. We apply an experience-based artificial intelligence approach known as case-based reasoning (CBR) in order to help autonomic manager to devise new configuration solution. Searching the entire case-base on occurrences of every new problem is a time consuming task. We propose to cluster the case-base and classify each new problem among one of the clusters. Our approach to reduce the search space promises to achieve efficiency as well as accuracy. We performed experiments on a simulation of autonomic forest fire application and achieved inspiring results.
基于聚类CBR方法的自主系统自配置
自构形是自主系统的关键特性之一。为了帮助自主管理者设计新的配置解决方案,我们采用了一种基于经验的人工智能方法,即基于案例的推理(CBR)。根据每个新问题的出现情况搜索整个案例库是一项耗时的任务。我们建议对案例库进行聚类,并在其中一个聚类中对每个新问题进行分类。我们减少搜索空间的方法保证了效率和准确性。我们进行了模拟自主森林火灾应用的实验,取得了鼓舞人心的成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信