Design Technology Co-Optimization for Neuromorphic Computing

Ankita Paul, Shihao Song, Anup Das
{"title":"Design Technology Co-Optimization for Neuromorphic Computing","authors":"Ankita Paul, Shihao Song, Anup Das","doi":"10.1109/IGSC54211.2021.9651556","DOIUrl":null,"url":null,"abstract":"We present a design-technology tradeoff analysis in implementing machine-learning inference on the processing cores of a Non-Volatile Memory (NVM)-based many-core neuromorphic hardware. Through detailed circuit-level simulations for scaled process technology nodes, we show the negative impact of design scaling on read endurance of NVMs, which directly impacts their inference lifetime. At a finer granularity, the inference lifetime of a core depends on 1) the resistance state of synaptic weights programmed on the core (design) and 2) the voltage variation inside the core that is introduced by the parasitic components on current paths (technology). We show that such design and technology characteristics can be incorporated in a design flow to significantly improve the inference lifetime.","PeriodicalId":334989,"journal":{"name":"2021 12th International Green and Sustainable Computing Conference (IGSC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 12th International Green and Sustainable Computing Conference (IGSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGSC54211.2021.9651556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We present a design-technology tradeoff analysis in implementing machine-learning inference on the processing cores of a Non-Volatile Memory (NVM)-based many-core neuromorphic hardware. Through detailed circuit-level simulations for scaled process technology nodes, we show the negative impact of design scaling on read endurance of NVMs, which directly impacts their inference lifetime. At a finer granularity, the inference lifetime of a core depends on 1) the resistance state of synaptic weights programmed on the core (design) and 2) the voltage variation inside the core that is introduced by the parasitic components on current paths (technology). We show that such design and technology characteristics can be incorporated in a design flow to significantly improve the inference lifetime.
神经形态计算的设计技术协同优化
我们提出了在基于非易失性存储器(NVM)的多核神经形态硬件的处理核心上实现机器学习推理的设计技术权衡分析。通过对缩放过程技术节点的详细电路级模拟,我们展示了设计缩放对nvm读取耐久性的负面影响,这直接影响了它们的推理寿命。在更细的粒度上,核心的推断寿命取决于1)在核心上编程的突触权重的电阻状态(设计)和2)由电流路径上的寄生组件引入的核心内部电压变化(技术)。我们表明,可以将这些设计和技术特征纳入设计流程中,以显着提高推理寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信