Offline Deep Reinforcement Learning for Dynamic Pricing of Consumer Credit

Raad Khraishi, Ramin Okhrati
{"title":"Offline Deep Reinforcement Learning for Dynamic Pricing of Consumer Credit","authors":"Raad Khraishi, Ramin Okhrati","doi":"10.1145/3533271.3561682","DOIUrl":null,"url":null,"abstract":"We introduce a method for pricing consumer credit using recent advances in offline deep reinforcement learning. This approach relies on a static dataset and as opposed to commonly used pricing approaches it requires no assumptions on the functional form of demand. Using both real and synthetic data on consumer credit applications, we demonstrate that our approach using the conservative Q-Learning algorithm is capable of learning an effective personalized pricing policy without any online interaction or price experimentation. In particular, using historical data on online auto loan applications we estimate an increase in expected profit of 21% with a less than 15% average change in prices relative to the original pricing policy.","PeriodicalId":134888,"journal":{"name":"Proceedings of the Third ACM International Conference on AI in Finance","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third ACM International Conference on AI in Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3533271.3561682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We introduce a method for pricing consumer credit using recent advances in offline deep reinforcement learning. This approach relies on a static dataset and as opposed to commonly used pricing approaches it requires no assumptions on the functional form of demand. Using both real and synthetic data on consumer credit applications, we demonstrate that our approach using the conservative Q-Learning algorithm is capable of learning an effective personalized pricing policy without any online interaction or price experimentation. In particular, using historical data on online auto loan applications we estimate an increase in expected profit of 21% with a less than 15% average change in prices relative to the original pricing policy.
基于离线深度强化学习的消费信贷动态定价
我们介绍了一种利用离线深度强化学习的最新进展为消费者信贷定价的方法。这种方法依赖于静态数据集,与常用的定价方法相反,它不需要对需求的功能形式进行假设。使用消费者信贷应用的真实和合成数据,我们证明了我们使用保守Q-Learning算法的方法能够在没有任何在线交互或价格实验的情况下学习有效的个性化定价策略。特别是,使用在线汽车贷款申请的历史数据,我们估计预期利润增长21%,相对于原始定价政策的平均价格变化小于15%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信