Exploring the Scalability of OpenCL Coarse Grained Parallelism on Cloud FPGAs

Jhanani Thiagarajan, Arnab A. Purkayastha, A. Patil, H. Tabkhi
{"title":"Exploring the Scalability of OpenCL Coarse Grained Parallelism on Cloud FPGAs","authors":"Jhanani Thiagarajan, Arnab A. Purkayastha, A. Patil, H. Tabkhi","doi":"10.1109/socc49529.2020.9524765","DOIUrl":null,"url":null,"abstract":"OpenCL programming ability combined with FPGAs pipelined parallelism have enabled high-performance execution and power-efficient solutions for massively parallel applications. This paper provides an exhaustive study on the scalability of OpenCL coarse-grain parallelism, Compute Unit (CU) replication on cloud FPGAs. This work demonstrates that for many applications there is an optimum number of CUs to achieve the maximum performance benefits with respect to memory bandwidth, memory conflicts introduced by CU replication and available FPGA resources. At the same time, the paper provides a source-code template and an optimized front-end design tool to explore and identify the optimum CU number for a given application, while hiding the programming and exploration difficulties from programmers. Our experimental results on 15 applications taken from the Xilinx SDAccel v2017.4 suite and the Rodinia Benchmark Suite v3.1 show a speedup of 6.2X, bandwidth improvement of 3.5X with a mere 1.04X power and less than 10% resource utilization on average. In addition, our tool results in a 31% improvement in the total design synthesis time for an illustrative Histogram application.","PeriodicalId":114740,"journal":{"name":"2020 IEEE 33rd International System-on-Chip Conference (SOCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 33rd International System-on-Chip Conference (SOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/socc49529.2020.9524765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

OpenCL programming ability combined with FPGAs pipelined parallelism have enabled high-performance execution and power-efficient solutions for massively parallel applications. This paper provides an exhaustive study on the scalability of OpenCL coarse-grain parallelism, Compute Unit (CU) replication on cloud FPGAs. This work demonstrates that for many applications there is an optimum number of CUs to achieve the maximum performance benefits with respect to memory bandwidth, memory conflicts introduced by CU replication and available FPGA resources. At the same time, the paper provides a source-code template and an optimized front-end design tool to explore and identify the optimum CU number for a given application, while hiding the programming and exploration difficulties from programmers. Our experimental results on 15 applications taken from the Xilinx SDAccel v2017.4 suite and the Rodinia Benchmark Suite v3.1 show a speedup of 6.2X, bandwidth improvement of 3.5X with a mere 1.04X power and less than 10% resource utilization on average. In addition, our tool results in a 31% improvement in the total design synthesis time for an illustrative Histogram application.
探讨OpenCL粗粒度并行在云fpga上的可扩展性
OpenCL编程能力与fpga流水线并行性相结合,为大规模并行应用程序提供了高性能执行和节能解决方案。本文详细研究了OpenCL粗粒度并行、计算单元(CU)复制在云fpga上的可扩展性。这项工作表明,对于许多应用程序来说,存在一个最佳数量的CU来实现最大的性能优势,涉及内存带宽,由CU复制引入的内存冲突和可用的FPGA资源。同时,本文提供了一个源代码模板和一个优化的前端设计工具,用于探索和确定给定应用程序的最佳CU数,同时对程序员隐藏了编程和探索的困难。我们对来自Xilinx SDAccel v2017.4套件和Rodinia Benchmark suite v3.1的15个应用程序的实验结果显示,速度提高了6.2倍,带宽提高了3.5倍,功耗仅为1.04倍,平均资源利用率低于10%。此外,我们的工具使说明性直方图应用程序的总设计合成时间提高了31%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信