TestMC

Muhammad Usman, Wenxi Wang, S. Khurshid
{"title":"TestMC","authors":"Muhammad Usman, Wenxi Wang, S. Khurshid","doi":"10.1145/3324884.3416563","DOIUrl":null,"url":null,"abstract":"Model counting is the problem for finding the number of solutions to a formula over a bounded universe. This is a classic problem in computer science that has seen many recent advances in techniques and tools that tackle it. These advances have led to applications of model counting in many domains, e.g., quantitative program analysis, reliability, and security. Given the sheer complexity of the underlying problem, today's model counters employ sophisticated algorithms and heuristics, which result in complex tools that must be heavily optimized. Therefore, establishing the correctness of implementations of model counters necessitates rigorous testing. This experience paper presents an empirical study on testing industrial strength model counters by applying the principles of differential and metamorphic testing together with bounded exhaustive input generation and input minimization. We embody these principles in the TestMC framework, and apply it to test four model counters, including three state-of-the-art model counters from three different classes. Specifically, we test the exact model counters projMC and dSharp, the probabilistic exact model counter Ganak, and the probabilistic approximate model counter ApproxMC. As subjects, we use three complementary test suites of input formulas. One suite consists of larger formulas that are derived from a wide range of real-world software design problems. The second suite consists of a bounded exhaustive set of small formulas that TestMC generated. The third suite consists of formulas generated using an off-the-shelf CNF fuzzer. TestMC found bugs in three of the four subject model counters. The bugs led to crashes, segmentation faults, incorrect model counts, and resource exhaustion by the solvers. Two of the tools were corrected subsequent to the bug reports we submitted based on our study, whereas the bugs we reported in the third tool were deemed by the tool authors to not require a fix.","PeriodicalId":267160,"journal":{"name":"Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3324884.3416563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Model counting is the problem for finding the number of solutions to a formula over a bounded universe. This is a classic problem in computer science that has seen many recent advances in techniques and tools that tackle it. These advances have led to applications of model counting in many domains, e.g., quantitative program analysis, reliability, and security. Given the sheer complexity of the underlying problem, today's model counters employ sophisticated algorithms and heuristics, which result in complex tools that must be heavily optimized. Therefore, establishing the correctness of implementations of model counters necessitates rigorous testing. This experience paper presents an empirical study on testing industrial strength model counters by applying the principles of differential and metamorphic testing together with bounded exhaustive input generation and input minimization. We embody these principles in the TestMC framework, and apply it to test four model counters, including three state-of-the-art model counters from three different classes. Specifically, we test the exact model counters projMC and dSharp, the probabilistic exact model counter Ganak, and the probabilistic approximate model counter ApproxMC. As subjects, we use three complementary test suites of input formulas. One suite consists of larger formulas that are derived from a wide range of real-world software design problems. The second suite consists of a bounded exhaustive set of small formulas that TestMC generated. The third suite consists of formulas generated using an off-the-shelf CNF fuzzer. TestMC found bugs in three of the four subject model counters. The bugs led to crashes, segmentation faults, incorrect model counts, and resource exhaustion by the solvers. Two of the tools were corrected subsequent to the bug reports we submitted based on our study, whereas the bugs we reported in the third tool were deemed by the tool authors to not require a fix.
TestMC
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信