Using Sparse Categorical Principal Components to Estimate Asset Indices: New Methods with an Application to Rural Southeast Asia

G. Merola, B. Baulch
{"title":"Using Sparse Categorical Principal Components to Estimate Asset Indices: New Methods with an Application to Rural Southeast Asia","authors":"G. Merola, B. Baulch","doi":"10.1111/rode.12568","DOIUrl":null,"url":null,"abstract":"Asset indices have been used since the late 1990s to measure wealth in developing countries. We extend the standard methodology for estimating asset indices using principal component analysis in two ways: by introducing constraints that force the indices to have increasing value as the number of assets owned increases, and by estimating sparse indices with a few key assets. This is achieved by combining categorical and sparse principal component analysis. We also apply this methodology to the estimation of per capita level asset indices. Using household survey data from northwest Vietnam and northeast Laos, we show that the resulting asset indices improve the prediction and ranking of income both at household and per capita level.","PeriodicalId":443911,"journal":{"name":"ERN: Other Econometrics: Applied Econometric Modeling in Macroeconomics (Topic)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Applied Econometric Modeling in Macroeconomics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/rode.12568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Asset indices have been used since the late 1990s to measure wealth in developing countries. We extend the standard methodology for estimating asset indices using principal component analysis in two ways: by introducing constraints that force the indices to have increasing value as the number of assets owned increases, and by estimating sparse indices with a few key assets. This is achieved by combining categorical and sparse principal component analysis. We also apply this methodology to the estimation of per capita level asset indices. Using household survey data from northwest Vietnam and northeast Laos, we show that the resulting asset indices improve the prediction and ranking of income both at household and per capita level.
利用稀疏分类主成分估计资产指数的新方法及其在东南亚农村地区的应用
自上世纪90年代末以来,资产指数一直被用于衡量发展中国家的财富。我们以两种方式扩展了使用主成分分析估计资产指数的标准方法:通过引入约束,迫使指数随着拥有的资产数量的增加而具有增加的价值,以及通过估计具有少数关键资产的稀疏指数。这是通过结合分类和稀疏主成分分析来实现的。我们还将这种方法应用于人均水平资产指数的估计。利用越南西北部和老挝东北部的家庭调查数据,我们发现所得的资产指数提高了家庭和人均收入水平的预测和排名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信