Election of variables and short-term forecasting of electricity demand based on backpropagation artificial neural networks

Xavier Serrano-Guerrero, Ricardo Prieto-Galarza, Esteban Huilcatanda, Juan Cabrera-Zeas, G. Escrivá-Escrivá
{"title":"Election of variables and short-term forecasting of electricity demand based on backpropagation artificial neural networks","authors":"Xavier Serrano-Guerrero, Ricardo Prieto-Galarza, Esteban Huilcatanda, Juan Cabrera-Zeas, G. Escrivá-Escrivá","doi":"10.1109/ROPEC.2017.8261630","DOIUrl":null,"url":null,"abstract":"Forecasting of electricity demand is a fundamental requirement for the energy sector since from its results important decisions are taken. The areas involved are maintenance of electrical networks, demand growth, increased installed capacity, among others, whose lack of precision can take high economic costs. In this work, we propose a method based on backpropagation neural networks and election of key variables as inputs. The number of neurons in the hidden layer was optimized. To avoid the overtraining the best time range of data was defined. The results show that the method works particularly well for short-term forecasting (24 or 48 hours).","PeriodicalId":260469,"journal":{"name":"2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROPEC.2017.8261630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Forecasting of electricity demand is a fundamental requirement for the energy sector since from its results important decisions are taken. The areas involved are maintenance of electrical networks, demand growth, increased installed capacity, among others, whose lack of precision can take high economic costs. In this work, we propose a method based on backpropagation neural networks and election of key variables as inputs. The number of neurons in the hidden layer was optimized. To avoid the overtraining the best time range of data was defined. The results show that the method works particularly well for short-term forecasting (24 or 48 hours).
基于反向传播人工神经网络的变量选择与短期电力需求预测
电力需求预测是能源部门的一项基本要求,因为重要的决策是根据其结果做出的。涉及的领域包括电网的维护、需求的增长、装机容量的增加等,这些领域缺乏精确度可能会带来高昂的经济成本。在这项工作中,我们提出了一种基于反向传播神经网络的方法,并选择关键变量作为输入。对隐层神经元数量进行了优化。为了避免过度训练,定义了数据的最佳时间范围。结果表明,该方法对短期预报(24或48小时)效果特别好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信