Android GUI Test Generation with SARSA

Md Khorrom Khan, Renée C. Bryce
{"title":"Android GUI Test Generation with SARSA","authors":"Md Khorrom Khan, Renée C. Bryce","doi":"10.1109/CCWC54503.2022.9720807","DOIUrl":null,"url":null,"abstract":"Android applications are often challenging to test because of large event spaces with an exponential number of event sequences. Several studies employ reinforcement learning to generate test suites in an effort to optimize code coverage and fault-finding effectiveness under limited testing budgets. In this paper, we generate test cases using the SARSA rein-forcement learning algorithm for seven Android applications, each with a two-hour testing window. The SARSA generated test suites achieve 9.87% to 24.79% better line coverage, 6.9% to 20.09% better branch coverage, 7.88% to 28.48% better method coverage and 3.74% to 35.02% better class coverage than the test suites generated at random by the Monkey tool.","PeriodicalId":101590,"journal":{"name":"2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCWC54503.2022.9720807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Android applications are often challenging to test because of large event spaces with an exponential number of event sequences. Several studies employ reinforcement learning to generate test suites in an effort to optimize code coverage and fault-finding effectiveness under limited testing budgets. In this paper, we generate test cases using the SARSA rein-forcement learning algorithm for seven Android applications, each with a two-hour testing window. The SARSA generated test suites achieve 9.87% to 24.79% better line coverage, 6.9% to 20.09% better branch coverage, 7.88% to 28.48% better method coverage and 3.74% to 35.02% better class coverage than the test suites generated at random by the Monkey tool.
使用SARSA生成Android GUI测试
Android应用程序的测试通常具有挑战性,因为具有指数数量的事件序列的大型事件空间。一些研究使用强化学习来生成测试套件,以在有限的测试预算下优化代码覆盖率和故障查找效率。在本文中,我们使用SARSA强化学习算法为七个Android应用程序生成测试用例,每个应用程序都有两个小时的测试窗口。与Monkey工具随机生成的测试套件相比,SARSA生成的测试套件实现了9.87%到24.79%更好的行覆盖率,6.9%到20.09%更好的分支覆盖率,7.88%到28.48%更好的方法覆盖率和3.74%到35.02%更好的类覆盖率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信