Enhancing timbre model using MFCC and its time derivatives for music similarity estimation

Franz A. de Leon, K. Martinez
{"title":"Enhancing timbre model using MFCC and its time derivatives for music similarity estimation","authors":"Franz A. de Leon, K. Martinez","doi":"10.5281/ZENODO.42839","DOIUrl":null,"url":null,"abstract":"One of the popular methods for content-based music similarity estimation is to model timbre with MFCC as a single multivariate Gaussian with full covariance matrix, then use symmetric Kullback-Leibler divergence. From the field of speech recognition, we propose to use the same approach on the MFCCs' time derivatives to enhance the timbre model. The Gaussian models for the delta and acceleration coefficients are used to create their respective distance matrix. The distance matrices are then combined linearly to form a full distance matrix for music similarity estimation. In our experiments on two datasets, our novel approach performs better than using MFCC alone. Moreover, performing genre classification using k-NN showed that the accuracies obtained are already close to the state-of-the-art.","PeriodicalId":201182,"journal":{"name":"2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.42839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

One of the popular methods for content-based music similarity estimation is to model timbre with MFCC as a single multivariate Gaussian with full covariance matrix, then use symmetric Kullback-Leibler divergence. From the field of speech recognition, we propose to use the same approach on the MFCCs' time derivatives to enhance the timbre model. The Gaussian models for the delta and acceleration coefficients are used to create their respective distance matrix. The distance matrices are then combined linearly to form a full distance matrix for music similarity estimation. In our experiments on two datasets, our novel approach performs better than using MFCC alone. Moreover, performing genre classification using k-NN showed that the accuracies obtained are already close to the state-of-the-art.
利用MFCC及其时间导数增强音色模型进行音乐相似度估计
基于内容的音乐相似度估计的常用方法之一是将MFCC建模为具有全协方差矩阵的单多元高斯,然后使用对称Kullback-Leibler散度。在语音识别领域,我们建议对MFCCs的时间导数使用相同的方法来增强音色模型。使用高斯模型来创建delta和加速度系数各自的距离矩阵。然后将距离矩阵线性组合,形成一个完整的距离矩阵,用于音乐相似度估计。在两个数据集上的实验中,我们的新方法比单独使用MFCC表现更好。此外,使用k-NN进行类型分类表明,获得的准确率已经接近最先进的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信