Online fake job advertisement recognition and classification using machine learning

Gasim Othman Alandjani
{"title":"Online fake job advertisement recognition and classification using machine learning","authors":"Gasim Othman Alandjani","doi":"10.17993/3ctic.2022.111.251-267","DOIUrl":null,"url":null,"abstract":"Machine learning algorithms handle numerous forms of data in real-world intelligent systems. With the advancement in technology and rigorous use of social media platforms, many job seekers and recruiters are actively working online. However, due to data and privacy breaches, one can become the target of perilous activates. The agencies and fraudsters entice the job seekers by using numerous methods, sources coming from virtual job-supplying websites. We aim to reduce the quantity of such fake and fraudulent attempts by providing predictions using Machine Learning. In our proposed approach, multiple classification models are used for better detection. This paper also presents different classifiers’ performance and compares results to enhance the results through various techniques for realistic results.","PeriodicalId":237333,"journal":{"name":"3C TIC: Cuadernos de desarrollo aplicados a las TIC","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3C TIC: Cuadernos de desarrollo aplicados a las TIC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17993/3ctic.2022.111.251-267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning algorithms handle numerous forms of data in real-world intelligent systems. With the advancement in technology and rigorous use of social media platforms, many job seekers and recruiters are actively working online. However, due to data and privacy breaches, one can become the target of perilous activates. The agencies and fraudsters entice the job seekers by using numerous methods, sources coming from virtual job-supplying websites. We aim to reduce the quantity of such fake and fraudulent attempts by providing predictions using Machine Learning. In our proposed approach, multiple classification models are used for better detection. This paper also presents different classifiers’ performance and compares results to enhance the results through various techniques for realistic results.
利用机器学习对在线虚假招聘广告进行识别和分类
机器学习算法在现实世界的智能系统中处理多种形式的数据。随着科技的进步和社交媒体平台的严格使用,许多求职者和招聘人员都在积极地在线工作。然而,由于数据和隐私泄露,一个人可能成为危险活动的目标。这些中介机构和骗子通过各种方法引诱求职者,这些方法来自虚拟就业网站。我们的目标是通过使用机器学习提供预测来减少这种虚假和欺诈性尝试的数量。在我们提出的方法中,为了更好地检测,使用了多个分类模型。本文还介绍了不同分类器的性能,并对结果进行了比较,以通过各种技术来提高结果的真实性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信