RNN Models for Rain Detection

H. Habi, H. Messer
{"title":"RNN Models for Rain Detection","authors":"H. Habi, H. Messer","doi":"10.1109/SiPS47522.2019.9020603","DOIUrl":null,"url":null,"abstract":"The task of rain detection, also known as wet-dry classification, using recurrent neural networks (RNNs) utilizing data from commercial microwave links (CMLs) has recently gained attention. Whereas previous studies used long short-term memory (LSTM) units, here we used gated recurrent units (GRUs). We compare the wet-dry classification performance of LSTM and GRU based network architectures using data from operational cellular backhaul networks and meteorological measurements in Israel and Sweden, and draw conclusions based on datasets consisting of actual measurements over two years in two different geological and climatic regions","PeriodicalId":256971,"journal":{"name":"2019 IEEE International Workshop on Signal Processing Systems (SiPS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Workshop on Signal Processing Systems (SiPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS47522.2019.9020603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The task of rain detection, also known as wet-dry classification, using recurrent neural networks (RNNs) utilizing data from commercial microwave links (CMLs) has recently gained attention. Whereas previous studies used long short-term memory (LSTM) units, here we used gated recurrent units (GRUs). We compare the wet-dry classification performance of LSTM and GRU based network architectures using data from operational cellular backhaul networks and meteorological measurements in Israel and Sweden, and draw conclusions based on datasets consisting of actual measurements over two years in two different geological and climatic regions
用于雨检测的RNN模型
利用商业微波链路(cml)的数据,利用递归神经网络(rnn)进行降雨探测,也称为干湿分类,最近引起了人们的关注。之前的研究使用的是长短期记忆(LSTM)单元,而本次研究使用的是门控循环单元(gru)。我们使用来自以色列和瑞典的蜂窝回程网络和气象测量数据比较了基于LSTM和GRU的网络架构的干湿分类性能,并基于两个不同地质和气候区域两年多的实际测量数据集得出结论
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信