Fast detection of sulcal regions for classification of Alzheimer’s disease and Mild Cognitive Impairment

Abhinav Dhere, Vikas Vazhayil, J. Sivaswamy
{"title":"Fast detection of sulcal regions for classification of Alzheimer’s disease and Mild Cognitive Impairment","authors":"Abhinav Dhere, Vikas Vazhayil, J. Sivaswamy","doi":"10.1109/SPCOM55316.2022.9840785","DOIUrl":null,"url":null,"abstract":"Alzheimer’s disease (AD) and Mild Cognitive Impairment (MCI) are neurogenerative impairments with similar symptoms and risk factors. Sulcal width and depth are known biomarkers for discriminating between AD and MCI. This paper presents a novel 2D image representation for a brain mesh surface, called a height map. The basic idea behind the height map is to represent the surface as a function of spherical coordinates of the mesh vertices. We present a method to derive a height map from a given neuroimage (MRI) and extract sulcal regions from the height map. We demonstrate the height map’s utility for classifying a given neuroimage into healthy, MCI and AD classes. Two approaches for extracting sulcal regions are explored. The proposed method is computationally light, and obtaining sulcal regions from a brain surface mesh takes about 24 seconds on a standard Intel i5-7200 CPU. The proposed method achieves 76.1% accuracy, and 76.3% F1-score for healthy, MCI, AD classification on a publicly available dataset.","PeriodicalId":246982,"journal":{"name":"2022 IEEE International Conference on Signal Processing and Communications (SPCOM)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Signal Processing and Communications (SPCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPCOM55316.2022.9840785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Alzheimer’s disease (AD) and Mild Cognitive Impairment (MCI) are neurogenerative impairments with similar symptoms and risk factors. Sulcal width and depth are known biomarkers for discriminating between AD and MCI. This paper presents a novel 2D image representation for a brain mesh surface, called a height map. The basic idea behind the height map is to represent the surface as a function of spherical coordinates of the mesh vertices. We present a method to derive a height map from a given neuroimage (MRI) and extract sulcal regions from the height map. We demonstrate the height map’s utility for classifying a given neuroimage into healthy, MCI and AD classes. Two approaches for extracting sulcal regions are explored. The proposed method is computationally light, and obtaining sulcal regions from a brain surface mesh takes about 24 seconds on a standard Intel i5-7200 CPU. The proposed method achieves 76.1% accuracy, and 76.3% F1-score for healthy, MCI, AD classification on a publicly available dataset.
快速检测脑沟区对阿尔茨海默病和轻度认知障碍的分类
阿尔茨海默病(AD)和轻度认知障碍(MCI)是具有相似症状和危险因素的神经再生障碍。沟宽和沟深是区分AD和MCI的已知生物标志物。本文提出了一种新的大脑网格表面的二维图像表示方法,称为高度图。高度图背后的基本思想是将表面表示为网格顶点的球坐标的函数。我们提出了一种方法,从给定的神经图像(MRI)中获得高度图,并从高度图中提取沟区。我们展示了高度图在将给定的神经图像分类为健康、轻度认知障碍和AD类别方面的实用性。探讨了两种提取沟区的方法。所提出的方法计算量小,在标准的Intel i5-7200 CPU上从脑表面网格获取脑沟区域大约需要24秒。该方法在公开数据集上的健康、MCI、AD分类准确率为76.1%,f1得分为76.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信