Deep learning using heterogeneous feature maps for maxout networks

Yasunori Ishii, Reiko Hagawa, Sotaro Tsukizawa
{"title":"Deep learning using heterogeneous feature maps for maxout networks","authors":"Yasunori Ishii, Reiko Hagawa, Sotaro Tsukizawa","doi":"10.1109/ACPR.2015.7486545","DOIUrl":null,"url":null,"abstract":"We propose a novel type of maxout that uses filters with kernels of multiple sizes for generating convolved maps. These filters extract the most effective features for recognition from many different variations of texture patterns. A convolved map is generated by convolution between feature maps and filters. If the size of filters is varied, the size of the convolved map will also vary; in which case, since there are no correspondences among the positions of convolved maps, maxout will not work for these kinds of filters. To align the sizes of convolved maps, we converted, in advance, feature maps, which we term `heterogeneous feature maps,' using zero padding. Converting the size of feature maps in this way allows maxout to function, even with filters of different sizes. In this study we demonstrate the classification performances using our proposed maxout on MNIST, CIFAR-10, CIFAR-100, SVHN datasets, and show a 13.17% improvement of accuracy with augmented data.","PeriodicalId":240902,"journal":{"name":"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2015.7486545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose a novel type of maxout that uses filters with kernels of multiple sizes for generating convolved maps. These filters extract the most effective features for recognition from many different variations of texture patterns. A convolved map is generated by convolution between feature maps and filters. If the size of filters is varied, the size of the convolved map will also vary; in which case, since there are no correspondences among the positions of convolved maps, maxout will not work for these kinds of filters. To align the sizes of convolved maps, we converted, in advance, feature maps, which we term `heterogeneous feature maps,' using zero padding. Converting the size of feature maps in this way allows maxout to function, even with filters of different sizes. In this study we demonstrate the classification performances using our proposed maxout on MNIST, CIFAR-10, CIFAR-100, SVHN datasets, and show a 13.17% improvement of accuracy with augmented data.
基于异构特征映射的maxout网络深度学习
我们提出了一种新的maxout类型,它使用具有多个大小核的过滤器来生成卷积映射。这些滤波器从许多不同的纹理模式变化中提取最有效的特征进行识别。卷积映射是通过特征映射和滤波器之间的卷积生成的。如果过滤器的大小不同,卷积映射的大小也会不同;在这种情况下,由于卷积映射的位置之间没有对应关系,maxout将不适用于这些类型的过滤器。为了调整卷积图的大小,我们提前转换了特征图,我们称之为“异构特征图”,使用零填充。以这种方式转换特征映射的大小允许maxout功能,即使使用不同大小的过滤器。在本研究中,我们在MNIST, CIFAR-10, CIFAR-100, SVHN数据集上使用我们提出的maxout验证了分类性能,并且在增强数据集上显示了13.17%的准确率提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信