{"title":"Privacy-preserving, indoor occupant localization using a network of single-pixel sensors","authors":"Douglas Roeper, Jiawei Chen, J. Konrad, P. Ishwar","doi":"10.1109/AVSS.2016.7738073","DOIUrl":null,"url":null,"abstract":"We propose an approach to indoor occupant localization using a network of single-pixel, visible-light sensors. In addition to preserving privacy, our approach vastly reduces data transmission rate and is agnostic to eavesdropping. We develop two purely data-driven localization algorithms and study their performance using a network of 6 such sensors. In one algorithm, we divide the monitored floor area (2.37m×2.72m) into a 3×3 grid of cells and classify location of a single person as belonging to one of the 9 cells using a support vector machine classifier. In the second algorithm, we estimate person's coordinates using support vector regression. In cross-validation tests in public (e.g., conference room) and private (e.g., home) scenarios, we obtain 67-72% correct classification rate for cells and 0.31-0.35m mean absolute distance error within the monitored space. Given the simplicity of sensors and processing, these are encouraging results and can lead to useful applications today.","PeriodicalId":438290,"journal":{"name":"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2016.7738073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
We propose an approach to indoor occupant localization using a network of single-pixel, visible-light sensors. In addition to preserving privacy, our approach vastly reduces data transmission rate and is agnostic to eavesdropping. We develop two purely data-driven localization algorithms and study their performance using a network of 6 such sensors. In one algorithm, we divide the monitored floor area (2.37m×2.72m) into a 3×3 grid of cells and classify location of a single person as belonging to one of the 9 cells using a support vector machine classifier. In the second algorithm, we estimate person's coordinates using support vector regression. In cross-validation tests in public (e.g., conference room) and private (e.g., home) scenarios, we obtain 67-72% correct classification rate for cells and 0.31-0.35m mean absolute distance error within the monitored space. Given the simplicity of sensors and processing, these are encouraging results and can lead to useful applications today.