Hassan Al-Haj, Roger Hsiao, Ian Lane, A. Black, A. Waibel
{"title":"Pronunciation modeling for dialectal arabic speech recognition","authors":"Hassan Al-Haj, Roger Hsiao, Ian Lane, A. Black, A. Waibel","doi":"10.1109/ASRU.2009.5373245","DOIUrl":null,"url":null,"abstract":"Short vowels in Arabic are normally omitted in written text which leads to ambiguity in the pronunciation. This is even more pronounced for dialectal Arabic where a single word can be pronounced quite differently based on the speaker's nationality, level of education, social class and religion. In this paper we focus on pronunciation modeling for Iraqi-Arabic speech. We introduce multiple pronunciations into the Iraqi speech recognition lexicon, and compare the performance, when weights computed via forced alignment are assigned to the different pronunciations of a word. Incorporating multiple pronunciations improved recognition accuracy compared to a single pronunciation baseline and introducing pronunciation weights further improved performance. Using these techniques an absolute reduction in word-error-rate of 2.4% was obtained compared to the baseline system.","PeriodicalId":292194,"journal":{"name":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2009.5373245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
Short vowels in Arabic are normally omitted in written text which leads to ambiguity in the pronunciation. This is even more pronounced for dialectal Arabic where a single word can be pronounced quite differently based on the speaker's nationality, level of education, social class and religion. In this paper we focus on pronunciation modeling for Iraqi-Arabic speech. We introduce multiple pronunciations into the Iraqi speech recognition lexicon, and compare the performance, when weights computed via forced alignment are assigned to the different pronunciations of a word. Incorporating multiple pronunciations improved recognition accuracy compared to a single pronunciation baseline and introducing pronunciation weights further improved performance. Using these techniques an absolute reduction in word-error-rate of 2.4% was obtained compared to the baseline system.