Relevance Propagation Model for Large Hypertext Documents Collections

Idir Chibane, Bich-Liên Doan
{"title":"Relevance Propagation Model for Large Hypertext Documents Collections","authors":"Idir Chibane, Bich-Liên Doan","doi":"10.5555/1931390.1931445","DOIUrl":null,"url":null,"abstract":"Web search engines have become indispensable in our daily life to help us finding the information we need. Several search tools, for instance Google, use links to select the matching documents against a query. In this paper, we propose a new ranking function that combines content and link rank based on propagation of scores over links. This function propagates scores from source pages to destination pages in relation with query terms. We assessed our ranking function with experiments over two test collections WT10g and GOV. We conclude that propagating link scores according to query terms provides significant improvement for information retrieval.","PeriodicalId":120472,"journal":{"name":"RIAO Conference","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RIAO Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/1931390.1931445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Web search engines have become indispensable in our daily life to help us finding the information we need. Several search tools, for instance Google, use links to select the matching documents against a query. In this paper, we propose a new ranking function that combines content and link rank based on propagation of scores over links. This function propagates scores from source pages to destination pages in relation with query terms. We assessed our ranking function with experiments over two test collections WT10g and GOV. We conclude that propagating link scores according to query terms provides significant improvement for information retrieval.
大型超文本文档集合的关联传播模型
网络搜索引擎已经成为我们日常生活中不可或缺的,帮助我们找到我们需要的信息。一些搜索工具(例如谷歌)使用链接根据查询选择匹配的文档。在本文中,我们提出了一个新的排名函数,该函数结合了内容和链接排名,基于分数在链接上的传播。此函数根据查询条件将分数从源页面传播到目标页面。我们通过两个测试集合WT10g和gov上的实验评估了我们的排名函数。我们得出结论,根据查询项传播链接分数可以显著改善信息检索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信