Design of Constant-Force Mechanisms Based on Straight-Line Linkages

Hsin-Ting Huang, C. Kuo
{"title":"Design of Constant-Force Mechanisms Based on Straight-Line Linkages","authors":"Hsin-Ting Huang, C. Kuo","doi":"10.1115/DETC2018-85241","DOIUrl":null,"url":null,"abstract":"This paper presents two novel constant-force mechanisms (CFMs) based on Scott-Russell and Hart’s straight-line linkages with mechanical springs. By articulating either two compression springs (type C-C) or one compression spring with another one extension spring (type C-E) onto each of these two CFMs, the point(s) which trace straight-line trajectories can illustrate a constant force within the mechanism workspace. We also show that the preload of the extension spring for type C-E CFMs will not affect its constant-force property but can define the amount of the output force. The proposed concepts of CFMs are relatively simple and concise, which could be useful for the complex mechanical systems that request a constant output force. A constant-force robotic gripper is illustrated by using the proposed Scott-Russell-type CFM.","PeriodicalId":132121,"journal":{"name":"Volume 5B: 42nd Mechanisms and Robotics Conference","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5B: 42nd Mechanisms and Robotics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/DETC2018-85241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents two novel constant-force mechanisms (CFMs) based on Scott-Russell and Hart’s straight-line linkages with mechanical springs. By articulating either two compression springs (type C-C) or one compression spring with another one extension spring (type C-E) onto each of these two CFMs, the point(s) which trace straight-line trajectories can illustrate a constant force within the mechanism workspace. We also show that the preload of the extension spring for type C-E CFMs will not affect its constant-force property but can define the amount of the output force. The proposed concepts of CFMs are relatively simple and concise, which could be useful for the complex mechanical systems that request a constant output force. A constant-force robotic gripper is illustrated by using the proposed Scott-Russell-type CFM.
基于直线连杆机构的恒力机构设计
提出了两种基于Scott-Russell和Hart的带机械弹簧直线连杆的新型恒力机构。通过将两个压缩弹簧(C-C型)或一个压缩弹簧与另一个延伸弹簧(C-E型)连接到这两个cfm上,沿着直线轨迹的点可以说明机构工作空间内的恒定力。C-E型cfm延伸弹簧的预紧力不会影响其恒力特性,但可以决定输出力的大小。所提出的cfm概念相对简单和简洁,这可能对要求恒定输出力的复杂机械系统有用。采用提出的scott - russell型CFM对恒力机械手进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信