O(log log n) time algorithms for Hamiltonian-suffix and min-max-pair heap operations on hypercube multicomputers

Sajal K. Das, M. C. Pinotti
{"title":"O(log log n) time algorithms for Hamiltonian-suffix and min-max-pair heap operations on hypercube multicomputers","authors":"Sajal K. Das, M. C. Pinotti","doi":"10.1109/IPPS.1997.580947","DOIUrl":null,"url":null,"abstract":"We present an efficient mapping of a min-max-pair heap of size N on a hypercube multicomputer of p processors in such a way the load on each processor's local memory is balanced and no additional communication overhead is incurred for implementation of the single insertion, deletemin and deletemax operations. Our novel approach is based on an optimal mapping of the paths of a binary heap into a hypercube such that in O(log N/p+log p) time we can compute the Hamiltonian-suffix, which is defined as a pipelined suffix-minima computation on an O(log N)length heap path embedded into the Hamiltonian path of the hypercube according to the binary reflected Gray codes. However the binary tree underlying the heap data structure is not altered by the mapping process.","PeriodicalId":145892,"journal":{"name":"Proceedings 11th International Parallel Processing Symposium","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th International Parallel Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPPS.1997.580947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present an efficient mapping of a min-max-pair heap of size N on a hypercube multicomputer of p processors in such a way the load on each processor's local memory is balanced and no additional communication overhead is incurred for implementation of the single insertion, deletemin and deletemax operations. Our novel approach is based on an optimal mapping of the paths of a binary heap into a hypercube such that in O(log N/p+log p) time we can compute the Hamiltonian-suffix, which is defined as a pipelined suffix-minima computation on an O(log N)length heap path embedded into the Hamiltonian path of the hypercube according to the binary reflected Gray codes. However the binary tree underlying the heap data structure is not altered by the mapping process.
超立方体多计算机上的hamilton -suffix和min-max对堆操作的O(log log n)时间算法
我们在p个处理器的超立方体多计算机上提供了一个大小为N的最小-最大对堆的有效映射,这样每个处理器的本地内存上的负载是平衡的,并且在实现单个插入、deletemin和deletemax操作时不会产生额外的通信开销。我们的新方法是基于二进制堆到超立方体的路径的最优映射,这样在O(log N/p+log p)时间内我们可以计算哈密顿-后缀,这被定义为根据二进制反射Gray码在嵌入到超立方体哈密顿路径中的O(log N)长度的堆路径上的管道后缀最小计算。但是,映射过程不会改变堆数据结构底层的二叉树。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信