Energy Distribution Image Processing of Stroke EEG Signal using Gray Level Co-occurrence Matrix

Safira Amalia, Koredianto Usman, Hilman Fauzi
{"title":"Energy Distribution Image Processing of Stroke EEG Signal using Gray Level Co-occurrence Matrix","authors":"Safira Amalia, Koredianto Usman, Hilman Fauzi","doi":"10.1109/IAICT55358.2022.9887511","DOIUrl":null,"url":null,"abstract":"In this study, we propose the effect of Electroencephalography (EEG) stroke signal processing into energy distribution images using energy distribution for stroke conditions. The EEG signals are used as an alternative method to help the improvement of Brain Computer Interface (BCI) to detect stroke conditions. The energy distribution clarifies the relationship for each channel while converting the EEG signal into an energy distribution image. The Gray-Level Co-Occurrence Matrix (GLCM) with Genetic Algorithm (GA) and ANN-BP are used as a method for image feature values to get the optimal system feature after brain mapping using Power Spectrum Density (PSD). We evaluate the system performances via a series of computer simulations. We investigate the feature combination using GLCM by taking the best 11 features, i.e., contrast, correlation, variance, entropy, homogeneity, energy, sum variance, sum entropy, difference variance, difference entropy and inverse difference momentum with an accuracy equal to 61.25%. Thus, the GA uses to select the feature on GLCM in order to find the best combination for the BCI system in this study. We found the accuracy value of GA-GLCM equals 72.5% with features, i.e., contrast, correlation, homogeneity, energy, sum variance, and different variance, while the EEG signal is tested with accuracy equals 59%. The result shows that the BCI system can be optimized using the converted EEG signal into energy distribution images. The results are expected to contribute to the future of biomedical development.","PeriodicalId":154027,"journal":{"name":"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAICT55358.2022.9887511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we propose the effect of Electroencephalography (EEG) stroke signal processing into energy distribution images using energy distribution for stroke conditions. The EEG signals are used as an alternative method to help the improvement of Brain Computer Interface (BCI) to detect stroke conditions. The energy distribution clarifies the relationship for each channel while converting the EEG signal into an energy distribution image. The Gray-Level Co-Occurrence Matrix (GLCM) with Genetic Algorithm (GA) and ANN-BP are used as a method for image feature values to get the optimal system feature after brain mapping using Power Spectrum Density (PSD). We evaluate the system performances via a series of computer simulations. We investigate the feature combination using GLCM by taking the best 11 features, i.e., contrast, correlation, variance, entropy, homogeneity, energy, sum variance, sum entropy, difference variance, difference entropy and inverse difference momentum with an accuracy equal to 61.25%. Thus, the GA uses to select the feature on GLCM in order to find the best combination for the BCI system in this study. We found the accuracy value of GA-GLCM equals 72.5% with features, i.e., contrast, correlation, homogeneity, energy, sum variance, and different variance, while the EEG signal is tested with accuracy equals 59%. The result shows that the BCI system can be optimized using the converted EEG signal into energy distribution images. The results are expected to contribute to the future of biomedical development.
基于灰度共生矩阵的脑电信号能量分布图像处理
在这项研究中,我们提出脑电图(EEG)脑卒中信号处理成能量分布图像的效果,利用能量分布为脑卒中条件。脑电信号作为一种替代方法,帮助改进脑机接口(BCI)来检测脑卒中情况。能量分布在将脑电信号转换成能量分布图像的同时,明确了各通道之间的关系。将灰度共生矩阵(GLCM)结合遗传算法(GA)和神经网络bp (ANN-BP)作为图像特征值的提取方法,在功率谱密度(PSD)脑映射后得到最优的系统特征。我们通过一系列的计算机模拟来评估系统的性能。采用GLCM方法,选取对比度、相关性、方差、熵、同质性、能量、和方差、和熵、差方差、差熵和逆差动量等11个最优特征进行特征组合研究,准确率为61.25%。因此,在本研究中,遗传算法使用GLCM来选择特征,以便为BCI系统找到最佳组合。我们发现GA-GLCM具有对比度、相关性、同质性、能量、和方差、异方差等特征,准确率为72.5%,而脑电信号的准确率为59%。结果表明,将脑电信号转换成能量分布图像,可以对脑机接口系统进行优化。这一结果有望为生物医学的未来发展做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信