Evaluating computational geometry libraries for big spatial data exploration

Yaming Zhang, A. Eldawy
{"title":"Evaluating computational geometry libraries for big spatial data exploration","authors":"Yaming Zhang, A. Eldawy","doi":"10.1145/3403896.3403969","DOIUrl":null,"url":null,"abstract":"With the rise of big spatial data, many systems were developed on Hadoop, Spark, Storm, Flink, and similar big data systems to handle big spatial data. At the core of all these systems, they use a computational geometry library to represent points, lines, and polygons, and to process them to evaluate spatial predicates and spatial analysis queries. This paper evaluates four computational geometry libraries to assess their suitability for various workloads in big spatial data exploration, namely, GEOS, JTS, Esri Geometry API, and GeoLite. The latter is a library that we built specifically for this paper to test some ideas that are not present in other libraries. For all the four libraries, we evaluate their computational efficiency and memory usage using a combination of micro- and macro-benchmarks on Spark. The paper gives recommendations on how to use these libraries for big spatial data exploration.","PeriodicalId":433637,"journal":{"name":"Proceedings of the Sixth International ACM SIGMOD Workshop on Managing and Mining Enriched Geo-Spatial Data","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth International ACM SIGMOD Workshop on Managing and Mining Enriched Geo-Spatial Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3403896.3403969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

With the rise of big spatial data, many systems were developed on Hadoop, Spark, Storm, Flink, and similar big data systems to handle big spatial data. At the core of all these systems, they use a computational geometry library to represent points, lines, and polygons, and to process them to evaluate spatial predicates and spatial analysis queries. This paper evaluates four computational geometry libraries to assess their suitability for various workloads in big spatial data exploration, namely, GEOS, JTS, Esri Geometry API, and GeoLite. The latter is a library that we built specifically for this paper to test some ideas that are not present in other libraries. For all the four libraries, we evaluate their computational efficiency and memory usage using a combination of micro- and macro-benchmarks on Spark. The paper gives recommendations on how to use these libraries for big spatial data exploration.
评估大空间数据探索的计算几何库
随着大空间数据的兴起,基于Hadoop、Spark、Storm、Flink等类似的大数据系统开发了许多系统来处理大空间数据。在所有这些系统的核心,它们使用计算几何库来表示点、线和多边形,并处理它们以评估空间谓词和空间分析查询。本文评估了四个计算几何库,即GEOS, JTS, Esri geometry API和GeoLite,以评估它们对大空间数据探索中各种工作负载的适用性。后者是我们专门为本文构建的一个库,用于测试其他库中不存在的一些想法。对于所有这四个库,我们使用Spark上的微观和宏观基准测试组合来评估它们的计算效率和内存使用情况。本文就如何利用这些库进行大空间数据探索提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信