A Comparison of Time Series Gap-Filling Methods to Impute Solar Radiation Data

M. Sengupta, S. Bandyopadhyay, A. Habte, Alexis Denhard
{"title":"A Comparison of Time Series Gap-Filling Methods to Impute Solar Radiation Data","authors":"M. Sengupta, S. Bandyopadhyay, A. Habte, Alexis Denhard","doi":"10.18086/swc.2021.38.03","DOIUrl":null,"url":null,"abstract":"Complete solar resource datasets play a critical role at every stage of solar project phases. However, measured or modeled solar resource data come with significant uncertainties and usually suffer from several issues, including but not limited to, data gaps, data quality issue, etc. In order to mitigate these issues an appropriate data imputation method should be implemented to build a complete and reliable temporal (and spatial) database. Being motivated by this, in this study we compare the performances of eight different gap filling methods extensively by creating random and artificial data gaps in (i) hourly irradiance data for one year using a few locations of the National Solar Radiation Database (NSRDB) and (ii) one-minute ground measurement dataset from Surface Radiation Budget Network (SURFRAD) and the National Renewable Energy Laboratory (NREL) stations.","PeriodicalId":448024,"journal":{"name":"Proceedings of the ISES Solar World Congress 2021","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ISES Solar World Congress 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18086/swc.2021.38.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Complete solar resource datasets play a critical role at every stage of solar project phases. However, measured or modeled solar resource data come with significant uncertainties and usually suffer from several issues, including but not limited to, data gaps, data quality issue, etc. In order to mitigate these issues an appropriate data imputation method should be implemented to build a complete and reliable temporal (and spatial) database. Being motivated by this, in this study we compare the performances of eight different gap filling methods extensively by creating random and artificial data gaps in (i) hourly irradiance data for one year using a few locations of the National Solar Radiation Database (NSRDB) and (ii) one-minute ground measurement dataset from Surface Radiation Budget Network (SURFRAD) and the National Renewable Energy Laboratory (NREL) stations.
时间序列补隙法估算太阳辐射数据的比较
完整的太阳能资源数据集在太阳能项目的每个阶段都起着至关重要的作用。然而,测量或建模的太阳能资源数据具有很大的不确定性,通常存在几个问题,包括但不限于数据差距、数据质量问题等。为了缓解这些问题,应该实施适当的数据输入方法,以建立一个完整可靠的时间(和空间)数据库。受此激励,在本研究中,我们通过使用国家太阳辐射数据库(NSRDB)的几个位置在(i)一年的每小时辐照度数据中创建随机和人工数据缺口,以及(ii)来自地面辐射预算网络(SURFRAD)和国家可再生能源实验室(NREL)站的一分钟地面测量数据集,广泛比较了八种不同间隙填充方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信