Pedestrian Detection based on Deep Fusion Network using Feature Correlation

Yong-woo Lee, T. Bui, Jitae Shin
{"title":"Pedestrian Detection based on Deep Fusion Network using Feature Correlation","authors":"Yong-woo Lee, T. Bui, Jitae Shin","doi":"10.23919/APSIPA.2018.8659688","DOIUrl":null,"url":null,"abstract":"Since most of the pedestrian detection method focus on color images, the detection accuracy is lower when the images are captured at night or dark. In this paper, we propose a deep fusion network based pedestrian detection method. We utilize deconvolutional single shot multi-box detector (DSSD) fused at halfway stage. Also, we apply feature correlation for two image modality feature maps to produce a new feature map. For the experiment, we use KAIST dataset to train and test the proposed method. The experiment results show that the proposed method gains 22.46% lower miss rate compared to the KAIST pedestrian detection baseline. In addition, the proposed method shows at least 4.28% lower miss rate compared to the conventional halfway fusion method.","PeriodicalId":287799,"journal":{"name":"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/APSIPA.2018.8659688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Since most of the pedestrian detection method focus on color images, the detection accuracy is lower when the images are captured at night or dark. In this paper, we propose a deep fusion network based pedestrian detection method. We utilize deconvolutional single shot multi-box detector (DSSD) fused at halfway stage. Also, we apply feature correlation for two image modality feature maps to produce a new feature map. For the experiment, we use KAIST dataset to train and test the proposed method. The experiment results show that the proposed method gains 22.46% lower miss rate compared to the KAIST pedestrian detection baseline. In addition, the proposed method shows at least 4.28% lower miss rate compared to the conventional halfway fusion method.
基于特征相关的深度融合网络行人检测
由于大多数行人检测方法都集中在彩色图像上,因此当图像在夜间或黑暗时,检测精度较低。本文提出了一种基于深度融合网络的行人检测方法。我们使用反卷积单次多盒探测器(DSSD)在中途融合。同时,对两个图像模态特征映射进行特征关联,生成新的特征映射。在实验中,我们使用KAIST数据集对所提出的方法进行训练和测试。实验结果表明,该方法与KAIST行人检测基线相比,脱靶率降低了22.46%。此外,与传统的半融合方法相比,该方法的脱靶率至少降低了4.28%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信