Validation of models: statistical techniques and data availability

J. Kleijnen
{"title":"Validation of models: statistical techniques and data availability","authors":"J. Kleijnen","doi":"10.1145/324138.324450","DOIUrl":null,"url":null,"abstract":"This paper shows which statistical techniques can be used to validate simulation models, depending on which real-life data are available. Concerning this availability, three situations are distinguished: (i) no data; (ii) only output data; and (iii) both input and output data. In case (i)-no real data-the analysts can still experiment with the simulation model to obtain simulated data; such an experiment should be guided by the statistical theory on the design of experiments. In case (ii) only output data-real and simulated output data can be compared through the well-known two-sample Student t statistic or certain other statistics. In case (iii)-input and output data-trace-driven simulation becomes possible, but validation should not proceed in the popular way (make a scatter plot with real and simulated outputs, fit a line, and test whether that line has unit slope and passes through the origin); alternative regression and bootstrap procedures are presented. Several case studies are summarized, to illustrate the three types of situations.","PeriodicalId":287132,"journal":{"name":"Online World Conference on Soft Computing in Industrial Applications","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"168","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Online World Conference on Soft Computing in Industrial Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/324138.324450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 168

Abstract

This paper shows which statistical techniques can be used to validate simulation models, depending on which real-life data are available. Concerning this availability, three situations are distinguished: (i) no data; (ii) only output data; and (iii) both input and output data. In case (i)-no real data-the analysts can still experiment with the simulation model to obtain simulated data; such an experiment should be guided by the statistical theory on the design of experiments. In case (ii) only output data-real and simulated output data can be compared through the well-known two-sample Student t statistic or certain other statistics. In case (iii)-input and output data-trace-driven simulation becomes possible, but validation should not proceed in the popular way (make a scatter plot with real and simulated outputs, fit a line, and test whether that line has unit slope and passes through the origin); alternative regression and bootstrap procedures are presented. Several case studies are summarized, to illustrate the three types of situations.
模型的验证:统计技术和数据的可用性
本文展示了哪些统计技术可以用来验证仿真模型,这取决于哪些真实的数据是可用的。关于这种可用性,有三种不同的情况:(i)没有数据;(ii)只输出数据;(iii)输入和输出数据。在(i)没有真实数据的情况下,分析人员仍然可以用模拟模型进行实验以获得模拟数据;这样的实验应该以实验设计的统计理论为指导。在(ii)只有输出数据——真实和模拟的输出数据可以通过众所周知的双样本Student t统计量或某些其他统计量进行比较。在(iii)情况下,输入和输出数据跟踪驱动的模拟成为可能,但验证不应以流行的方式进行(制作真实和模拟输出的散点图,拟合一条线,并测试该线是否具有单位斜率并通过原点);提出了备选的回归和自举方法。总结了几个案例研究,以说明这三种情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信