Optimal array signal processing in unknown noise environments via parametric approaches

Qiang Wu, K. M. Wong, J. Reilly
{"title":"Optimal array signal processing in unknown noise environments via parametric approaches","authors":"Qiang Wu, K. M. Wong, J. Reilly","doi":"10.1117/12.130934","DOIUrl":null,"url":null,"abstract":"Under the assumption that noise correlation is spatially limited, using two separated arrays, the authors propose a new parametric approach for consistent directions-of-arrival estimations in unknown noise environments. The theoretical performance analysis of the proposed DOA estimations is presented. With the use of the theoretical performance, the best weighting matrices of the parametric criteria have been derived. More significantly, it has been shown that within the best weighted criteria, using canonical decomposition, one can achieve optimal performance among a large set of eigendecompositions.<<ETX>>","PeriodicalId":309407,"journal":{"name":"[1992] IEEE Sixth SP Workshop on Statistical Signal and Array Processing","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] IEEE Sixth SP Workshop on Statistical Signal and Array Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.130934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Under the assumption that noise correlation is spatially limited, using two separated arrays, the authors propose a new parametric approach for consistent directions-of-arrival estimations in unknown noise environments. The theoretical performance analysis of the proposed DOA estimations is presented. With the use of the theoretical performance, the best weighting matrices of the parametric criteria have been derived. More significantly, it has been shown that within the best weighted criteria, using canonical decomposition, one can achieve optimal performance among a large set of eigendecompositions.<>
通过参数方法优化未知噪声环境中的阵列信号处理
在噪声相关性空间有限的假设下,作者利用两个分离的阵列,提出了一种新的参数方法,用于在未知噪声环境中进行一致的到达方向估计。文中对所提出的 DOA 估计进行了理论性能分析。利用理论性能,得出了参数标准的最佳加权矩阵。更重要的是,研究表明,在最佳加权准则范围内,利用规范分解,可以在大量的eigendecompositions中获得最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信