Conditional Perceptual Adversarial Variational Autoencoder for Age Progression and Regression on Child Face

Praveen Kumar Chandaliya, N. Nain
{"title":"Conditional Perceptual Adversarial Variational Autoencoder for Age Progression and Regression on Child Face","authors":"Praveen Kumar Chandaliya, N. Nain","doi":"10.1109/ICB45273.2019.8987410","DOIUrl":null,"url":null,"abstract":"Recent works have shown that Generative Adversarial Networks (GAN) and Variational Auto-Encoder (VAE) can construct synthetic images of remarkable visual fidelity. In this paper, we propose a novel architecture based on GAN and VAE with Perceptual loss termed as Conditional Perceptual Adversarial Variational Autoencoder (CPAVAE), a model for face aging and rejuvenation on children face. CPAVAE performs face aging and rejuvenation by learning manifold constrained with conditions such as age and gender, which allows it to preserve face identity. CPAVAE uses six networks; these networks are an Encoder (E) and Sampling (S) which maps the child face to latent vector, Generator (G) takes the latent vector z as input along with age conditioned vector and tries to reconstruct the input image, a perceptual loss network Φ, a pre-trained very deep convolution network, discriminator on the encoder (Dz) smoothen’s the age transformation, discriminator on the image (Dimg) forces the generator to produce human realistic images. Here D and E are based on Variational Auto-encoder (VAE) architecture, VGGNet is used as perceptual loss network (Ploss), Dz and Dimg are convolutional neural networks. We represent child face progression and regression on the Children Longitudinal Face(CLF) dataset containing 10752 faces images in the age group [0 : 20]. This dataset contains 6164 and 4588 images of boys and girls respectively.","PeriodicalId":430846,"journal":{"name":"2019 International Conference on Biometrics (ICB)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB45273.2019.8987410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Recent works have shown that Generative Adversarial Networks (GAN) and Variational Auto-Encoder (VAE) can construct synthetic images of remarkable visual fidelity. In this paper, we propose a novel architecture based on GAN and VAE with Perceptual loss termed as Conditional Perceptual Adversarial Variational Autoencoder (CPAVAE), a model for face aging and rejuvenation on children face. CPAVAE performs face aging and rejuvenation by learning manifold constrained with conditions such as age and gender, which allows it to preserve face identity. CPAVAE uses six networks; these networks are an Encoder (E) and Sampling (S) which maps the child face to latent vector, Generator (G) takes the latent vector z as input along with age conditioned vector and tries to reconstruct the input image, a perceptual loss network Φ, a pre-trained very deep convolution network, discriminator on the encoder (Dz) smoothen’s the age transformation, discriminator on the image (Dimg) forces the generator to produce human realistic images. Here D and E are based on Variational Auto-encoder (VAE) architecture, VGGNet is used as perceptual loss network (Ploss), Dz and Dimg are convolutional neural networks. We represent child face progression and regression on the Children Longitudinal Face(CLF) dataset containing 10752 faces images in the age group [0 : 20]. This dataset contains 6164 and 4588 images of boys and girls respectively.
儿童面部年龄进退的条件知觉对抗变分自编码器
最近的研究表明,生成对抗网络(GAN)和变分自编码器(VAE)可以构建具有显著视觉保真度的合成图像。在本文中,我们提出了一种新的基于GAN和VAE的具有感知损失的结构,称为条件感知对抗变分自编码器(CPAVAE),这是一种用于儿童面部衰老和年轻化的模型。CPAVAE通过学习受年龄和性别等条件限制的多样性来实现面部衰老和年轻化,从而使其能够保持面部身份。CPAVAE使用六个网络;这些网络是编码器(E)和采样(S),它们将儿童面部映射到潜在向量,生成器(G)将潜在向量z作为输入以及年龄条件向量,并试图重建输入图像,感知损失网络Φ,预训练的非常深的卷积网络,编码器上的鉴别器(Dz)平滑年龄转换,图像上的鉴别器(Dimg)迫使生成器生成人类逼真的图像。其中D和E基于变分自编码器(VAE)架构,VGGNet作为感知损失网络(Ploss), Dz和Dimg是卷积神经网络。我们在儿童纵向面部(Children Longitudinal face, CLF)数据集上表示儿童面部的进展和回归,该数据集包含10752张年龄组的面部图像[0:20]。该数据集分别包含6164和4588张男孩和女孩的图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信