Rényi Fair Information Bottleneck for Image Classification

A. Gronowski, W. Paul, F. Alajaji, B. Gharesifard, P. Burlina
{"title":"Rényi Fair Information Bottleneck for Image Classification","authors":"A. Gronowski, W. Paul, F. Alajaji, B. Gharesifard, P. Burlina","doi":"10.48550/arXiv.2203.04950","DOIUrl":null,"url":null,"abstract":"We develop a novel method for ensuring fairness in machine learning which we term as the Rényi Fair Information Bottleneck (RFIB). We consider two different fairness constraints - demographic parity and equalized odds - for learning fair representations and derive a loss function via a variational approach that uses Renyi's divergence with its tunable parameter $\\alpha$ and that takes into account the triple constraints of utility, fairness, and compactness of representation. We then evaluate the performance of our method for image classification using the EyePACS medical imaging dataset, showing it outperforms competing state of the art techniques with performance measured using a variety of compound utility/fairness metrics, including accuracy gap and Rawls' minimal accuracy.","PeriodicalId":401562,"journal":{"name":"2022 17th Canadian Workshop on Information Theory (CWIT)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 17th Canadian Workshop on Information Theory (CWIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2203.04950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We develop a novel method for ensuring fairness in machine learning which we term as the Rényi Fair Information Bottleneck (RFIB). We consider two different fairness constraints - demographic parity and equalized odds - for learning fair representations and derive a loss function via a variational approach that uses Renyi's divergence with its tunable parameter $\alpha$ and that takes into account the triple constraints of utility, fairness, and compactness of representation. We then evaluate the performance of our method for image classification using the EyePACS medical imaging dataset, showing it outperforms competing state of the art techniques with performance measured using a variety of compound utility/fairness metrics, including accuracy gap and Rawls' minimal accuracy.
图像分类中的信息瓶颈问题
我们开发了一种确保机器学习公平性的新方法,我们将其称为RFIB。我们考虑了两种不同的公平约束——人口均等和均等几率——用于学习公平表征,并通过变分方法推导了损失函数,该方法使用Renyi的散度及其可调参数$\alpha$,并考虑了表征的效用、公平性和紧凑性的三重约束。然后,我们使用EyePACS医学成像数据集评估我们的图像分类方法的性能,显示它优于使用各种复合效用/公平性指标(包括精度差距和罗尔斯最小精度)测量的竞争技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信