Anomaly Detection in Aerial Imagery Using Color and Texture Features

Fabian Zavala-Vazquez, F. E. Correa-Tome, Uriel H. Hernandez-Belmonte, J. Ramirez-Paredes
{"title":"Anomaly Detection in Aerial Imagery Using Color and Texture Features","authors":"Fabian Zavala-Vazquez, F. E. Correa-Tome, Uriel H. Hernandez-Belmonte, J. Ramirez-Paredes","doi":"10.1109/ICMEAE.2019.00016","DOIUrl":null,"url":null,"abstract":"The detection of anomalous regions in digital images can be used in many applications, such as security, search and rescue operations, hazard identification and industrial inspection. In this work, we present an anomaly detection method based on color and texture features applied to a non-linear one-class classifier, and show that it provides excellent results, even when compared to a two-class classifier. Our approach is lightweight and aimed at its implementation on an onboard computer for an Unmanned Aerial Vehicle.","PeriodicalId":422872,"journal":{"name":"2019 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEAE.2019.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The detection of anomalous regions in digital images can be used in many applications, such as security, search and rescue operations, hazard identification and industrial inspection. In this work, we present an anomaly detection method based on color and texture features applied to a non-linear one-class classifier, and show that it provides excellent results, even when compared to a two-class classifier. Our approach is lightweight and aimed at its implementation on an onboard computer for an Unmanned Aerial Vehicle.
基于颜色和纹理特征的航空图像异常检测
数字图像中异常区域的检测可用于许多应用,如安全、搜索和救援行动、危险识别和工业检查。在这项工作中,我们提出了一种基于颜色和纹理特征的异常检测方法,应用于非线性一类分类器,并表明它提供了很好的结果,即使与两类分类器相比也是如此。我们的方法是轻量级的,旨在在无人驾驶飞行器的机载计算机上实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信