{"title":"Channel equalization with cellular neural networks","authors":"A. Özmen, B. Tander","doi":"10.1109/MELCON.2010.5476301","DOIUrl":null,"url":null,"abstract":"In this paper, a dynamic neural network structure called Cellular Neural Network (CNN) is employed for the equalization in digital communication. It is shown that, this nonlinear system is capable of suppressing the effect of intersymbol interference (ISI) and the noise at the channel. The architecture is a small-scaled, simple CNN containing 9 neurons, thus having only 19 weight coefficients. Proposed system is compared with linear transversal filters as well as with a Multilayer Perceptron (MLP) based equalizer.","PeriodicalId":256057,"journal":{"name":"Melecon 2010 - 2010 15th IEEE Mediterranean Electrotechnical Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Melecon 2010 - 2010 15th IEEE Mediterranean Electrotechnical Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MELCON.2010.5476301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, a dynamic neural network structure called Cellular Neural Network (CNN) is employed for the equalization in digital communication. It is shown that, this nonlinear system is capable of suppressing the effect of intersymbol interference (ISI) and the noise at the channel. The architecture is a small-scaled, simple CNN containing 9 neurons, thus having only 19 weight coefficients. Proposed system is compared with linear transversal filters as well as with a Multilayer Perceptron (MLP) based equalizer.