Perbandingan Algoritma untuk Mereduksi Noise pada Citra Digital

Ginanjar Setyo Nugroho, Gulam Hazmin
{"title":"Perbandingan Algoritma untuk Mereduksi Noise pada Citra Digital","authors":"Ginanjar Setyo Nugroho, Gulam Hazmin","doi":"10.51519/journalita.volume3.isssue2.year2022.page159-174","DOIUrl":null,"url":null,"abstract":"Image restoration is one of the stages in the field of Digital Image Processing. Image restoration is objective, in the sense that restoration techniques tend to be based on mathematical or probabillistic models of image degradation. The mathematical algorithm to reduce noise in digital images in this study uses 8 filtering algorithm methods. The purpose of this study is to compare 8 filtering algorithm and conclude which algorithm is the best for reducing noise in digital images. The method for generating noise uses Rayleigh Noise and Erlang (Gamma) Noise. The algorithm for reducing noise is Arithmetic Mean Filter, Geometric Mean Filter, Harmonic Mean Filter, Contraharmonic Mean Filter, Geometric Mean Filter, Harmonic Mean Filter, Contraharmonic Mean Filter, Median Filter, Maximum Filter, Minimum Filter, and Midpoint Filter. The measurement to determine which algorithm is the best using Root Mean Square Error (RMSE). Tests were carried out on 15 digital images by testing 1200 times. The conclusion of this study is that the best algorithm for noise reduction is Median Filter by resulting the smallest RMSE value of 6.0860942.","PeriodicalId":143464,"journal":{"name":"Journal of Information Technology Ampera","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Technology Ampera","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51519/journalita.volume3.isssue2.year2022.page159-174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Image restoration is one of the stages in the field of Digital Image Processing. Image restoration is objective, in the sense that restoration techniques tend to be based on mathematical or probabillistic models of image degradation. The mathematical algorithm to reduce noise in digital images in this study uses 8 filtering algorithm methods. The purpose of this study is to compare 8 filtering algorithm and conclude which algorithm is the best for reducing noise in digital images. The method for generating noise uses Rayleigh Noise and Erlang (Gamma) Noise. The algorithm for reducing noise is Arithmetic Mean Filter, Geometric Mean Filter, Harmonic Mean Filter, Contraharmonic Mean Filter, Geometric Mean Filter, Harmonic Mean Filter, Contraharmonic Mean Filter, Median Filter, Maximum Filter, Minimum Filter, and Midpoint Filter. The measurement to determine which algorithm is the best using Root Mean Square Error (RMSE). Tests were carried out on 15 digital images by testing 1200 times. The conclusion of this study is that the best algorithm for noise reduction is Median Filter by resulting the smallest RMSE value of 6.0860942.
比较算法来还原数字图像中的噪音
图像恢复是数字图像处理领域的一个重要环节。图像恢复是客观的,因为恢复技术往往是基于图像退化的数学或概率模型。本研究中用于降低数字图像噪声的数学算法使用了8种滤波算法。本研究的目的是比较8种滤波算法,得出哪种算法对数字图像的降噪效果最好。产生噪声的方法采用瑞利噪声和厄朗(伽马)噪声。降低噪声的算法有算术均值滤波器、几何均值滤波器、谐波均值滤波器、反谐波均值滤波器、几何均值滤波器、谐波均值滤波器、反谐波均值滤波器、中值滤波器、最大值滤波器、最小值滤波器和中点滤波器。使用均方根误差(RMSE)来确定哪种算法是最好的测量。对15幅数字图像进行了1200次测试。本研究的结论是中值滤波是降噪效果最好的算法,其RMSE值最小,为6.0860942。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信