pytwanalysis: Twitter Data Management And Analysis at Scale

Lia Nogueira de Moura, Jelena Tešić
{"title":"pytwanalysis: Twitter Data Management And Analysis at Scale","authors":"Lia Nogueira de Moura, Jelena Tešić","doi":"10.1109/SNAMS53716.2021.9732079","DOIUrl":null,"url":null,"abstract":"Trends and communities in social media networks shape news cycles, politics, public governing, and economy these days. There is a wealth of information in the way users interact in the large social media networks, and state-of-the-art of mining network data from e.g. Twitter platform is limited by the narrow field of research or computing power. In this paper, we describe the new end-to-end Twitter network data management pipeline. We propose a scalable way to gather, store, and model rich relationships from Twitter networks. We also propose to analyze Twitter data using a combination of graph-clustering and topic modeling techniques at scale using multiple data science methods for graph construction and tweet data processing. We evaluate the proposed system on over 9 million tweets over five different Twitter datasets. We invite the community to add more features, as this end to end pipeline is released as an open source gitHub repository pytwanalysis [1], and as a python pip package pytwanalysis [2].","PeriodicalId":387260,"journal":{"name":"2021 Eighth International Conference on Social Network Analysis, Management and Security (SNAMS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Eighth International Conference on Social Network Analysis, Management and Security (SNAMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNAMS53716.2021.9732079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Trends and communities in social media networks shape news cycles, politics, public governing, and economy these days. There is a wealth of information in the way users interact in the large social media networks, and state-of-the-art of mining network data from e.g. Twitter platform is limited by the narrow field of research or computing power. In this paper, we describe the new end-to-end Twitter network data management pipeline. We propose a scalable way to gather, store, and model rich relationships from Twitter networks. We also propose to analyze Twitter data using a combination of graph-clustering and topic modeling techniques at scale using multiple data science methods for graph construction and tweet data processing. We evaluate the proposed system on over 9 million tweets over five different Twitter datasets. We invite the community to add more features, as this end to end pipeline is released as an open source gitHub repository pytwanalysis [1], and as a python pip package pytwanalysis [2].
pytwanalysis:大规模的Twitter数据管理和分析
如今,社交媒体网络中的趋势和社区塑造了新闻周期、政治、公共治理和经济。用户在大型社交媒体网络中互动的方式中存在着丰富的信息,而从Twitter平台中挖掘网络数据的最新技术受到狭窄的研究领域或计算能力的限制。在本文中,我们描述了一个新的端到端Twitter网络数据管理管道。我们提出了一种可扩展的方式来收集、存储和建模来自Twitter网络的丰富关系。我们还建议使用图聚类和主题建模技术的组合来大规模分析Twitter数据,并使用多种数据科学方法进行图构建和tweet数据处理。我们在五个不同的Twitter数据集上对900多万条tweet进行了评估。我们邀请社区添加更多的功能,因为这个端到端管道作为开源gitHub存储库pytwanalysis[1]和python pip包pytwanalysis[2]发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信