Comparative study of Video/Image denoising algorithms based on Convolutional neural network CNN

Salim Terai, Soumia Sid Ahmed, Z. Messali
{"title":"Comparative study of Video/Image denoising algorithms based on Convolutional neural network CNN","authors":"Salim Terai, Soumia Sid Ahmed, Z. Messali","doi":"10.1109/ICAEE53772.2022.9962112","DOIUrl":null,"url":null,"abstract":"In this paper, we present a comparative study of different algorithms used to denoise images and videos, some of them are especially used in deep neural networks so we can see the effects of its performances using different computational criteria such as PSNR and SSIM. The algorithms for image denoising are BM3D, DnCNN, FFDNet, and the others for video denoising are SPTWO, VBM4D, VNLB, DVDnet, and Fast DVDnet. The purpose of this study is to see the powerful effect of convolutional neural network CNN used in image & video denoising compared to classical techniques.","PeriodicalId":206584,"journal":{"name":"2022 2nd International Conference on Advanced Electrical Engineering (ICAEE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Advanced Electrical Engineering (ICAEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAEE53772.2022.9962112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a comparative study of different algorithms used to denoise images and videos, some of them are especially used in deep neural networks so we can see the effects of its performances using different computational criteria such as PSNR and SSIM. The algorithms for image denoising are BM3D, DnCNN, FFDNet, and the others for video denoising are SPTWO, VBM4D, VNLB, DVDnet, and Fast DVDnet. The purpose of this study is to see the powerful effect of convolutional neural network CNN used in image & video denoising compared to classical techniques.
基于卷积神经网络CNN的视频/图像去噪算法比较研究
在本文中,我们对用于图像和视频去噪的不同算法进行了比较研究,其中一些算法特别用于深度神经网络,因此我们可以使用不同的计算标准(如PSNR和SSIM)来查看其性能的影响。图像去噪算法有BM3D、DnCNN、FFDNet,视频去噪算法有SPTWO、VBM4D、VNLB、DVDnet、Fast DVDnet。本研究的目的是看到卷积神经网络CNN与经典技术相比在图像和视频去噪方面的强大效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信