{"title":"Approximation of *Weak-to-Norm Continuous Mappings","authors":"L. D’Ambrosio","doi":"10.1006/jath.2002.3708","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to study the approximation of vector-valued mappings defined on a subset of a normed space. We investigate Korovkin-type conditions useful to recognize if a given sequence of linear operators is a so-called approximation process. First, we give a sufficient condition for this sequence to approximate the class of bounded, uniformly continuous functions. Then we present some sufficient and necessary conditions guaranteeing the approximation within the class of unbounded, *weak-to-norm continuous mappings. We also derive some estimates of the rate of convergence. We apply concrete approximation processes to derive representation formulae for semigroups of bounded linear operators.","PeriodicalId":202056,"journal":{"name":"J. Approx. Theory","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Approx. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1006/jath.2002.3708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The purpose of this paper is to study the approximation of vector-valued mappings defined on a subset of a normed space. We investigate Korovkin-type conditions useful to recognize if a given sequence of linear operators is a so-called approximation process. First, we give a sufficient condition for this sequence to approximate the class of bounded, uniformly continuous functions. Then we present some sufficient and necessary conditions guaranteeing the approximation within the class of unbounded, *weak-to-norm continuous mappings. We also derive some estimates of the rate of convergence. We apply concrete approximation processes to derive representation formulae for semigroups of bounded linear operators.