{"title":"A Framework of Multi-Fidelity Topology Design and its Application to Optimum Design of Flow Fields in Battery Systems","authors":"K. Yaji, S. Yamasaki, S. Tsushima, K. Fujita","doi":"10.1115/detc2019-97675","DOIUrl":null,"url":null,"abstract":"\n We propose a novel framework based on multi-fidelity design optimization for indirectly solving computationally hard topology optimization problems. The primary concept of the proposed framework is to divide an original topology optimization problem into two subproblems, i.e., low- and high-fidelity design optimization problems. Hence, artificial design parameters, referred to as seeding parameters, are incorporated into the low-fidelity design optimization problem that is formulated on the basis of a pseudo-topology optimization problem. Meanwhile, the role of high-fidelity design optimization is to obtain a promising initial guess from a dataset comprising topology-optimized design candidates, and subsequently solve a surrogate optimization problem under a restricted design solution space. We apply the proposed framework to a topology optimization problem for the design of flow fields in battery systems, and confirm the efficacy through numerical investigations.","PeriodicalId":365601,"journal":{"name":"Volume 2A: 45th Design Automation Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2A: 45th Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-97675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We propose a novel framework based on multi-fidelity design optimization for indirectly solving computationally hard topology optimization problems. The primary concept of the proposed framework is to divide an original topology optimization problem into two subproblems, i.e., low- and high-fidelity design optimization problems. Hence, artificial design parameters, referred to as seeding parameters, are incorporated into the low-fidelity design optimization problem that is formulated on the basis of a pseudo-topology optimization problem. Meanwhile, the role of high-fidelity design optimization is to obtain a promising initial guess from a dataset comprising topology-optimized design candidates, and subsequently solve a surrogate optimization problem under a restricted design solution space. We apply the proposed framework to a topology optimization problem for the design of flow fields in battery systems, and confirm the efficacy through numerical investigations.