Kang Li, Jinghua Li, Yutao Jiao, Guoru Ding, Shihua Dong
{"title":"An expectation maximization solution for RSS target localization by Gaussian mixture noise analysis","authors":"Kang Li, Jinghua Li, Yutao Jiao, Guoru Ding, Shihua Dong","doi":"10.1117/12.2589432","DOIUrl":null,"url":null,"abstract":"RSS-based target localization algorithms are usually derived from channel path-loss model where the measurement noise is generally assumed to obey Gaussian distribution. In this paper, we approximate the realistic measurement noise distribution by a Gaussian mixture model and proposed an improved mixture noise analysis-based RSS target localization algorithm employing expectation maximization, called Gaussian mixture-expectation maximization (GMEM) approach, to estimate target coordinates iteratively, which can be efficiently used for tackling unknown parameters of maximum likelihood estimation and non-convex optimization. Simulations show a considerable performance gain of our proposed localization algorithm in 2-D wireless sensor network.","PeriodicalId":415097,"journal":{"name":"International Conference on Signal Processing Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Signal Processing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2589432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
RSS-based target localization algorithms are usually derived from channel path-loss model where the measurement noise is generally assumed to obey Gaussian distribution. In this paper, we approximate the realistic measurement noise distribution by a Gaussian mixture model and proposed an improved mixture noise analysis-based RSS target localization algorithm employing expectation maximization, called Gaussian mixture-expectation maximization (GMEM) approach, to estimate target coordinates iteratively, which can be efficiently used for tackling unknown parameters of maximum likelihood estimation and non-convex optimization. Simulations show a considerable performance gain of our proposed localization algorithm in 2-D wireless sensor network.